

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AN ENHANCED GRAPHICAL USER INTERFACE FOR
ANALYZING THE VULNERABILITY OF ELECTRICAL

POWER SYSTEMS TO TERRORIST ATTACKS

by

Dimitrios Stathakos

December 2003

 Thesis Advisor: Javier Salmeron
 Second Reader: Kevin Wood

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: An Enhanced Graphical User Interface For
Analyzing The Vulnerability Of Electrical Power Systems To Terrorist
Attacks.
6. AUTHOR(S) Dimitrios Stathakos

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 This thesis develops a Graphical User Interface (GUI) to represent electric power grids subject to interdiction
(attack) by terrorists. The work enhances the prototypic One-line Diagram (OD) representations of electric power
networks in the VEGA 1.0 decision-support system (Vulnerability of Electrical Power Grids Analysis, version 1.0).
Conforming to Windows standards, the new OD GUI incorporates advanced graphical features, which help the user
visualize the model and understand the consequences of interdiction. The new ODs also capture the details of system
restoration over time following an attack. The enhanced OD GUI has been incorporated into the updated version of the
system, VEGA 2.0.

15. NUMBER OF
PAGES

123

14. SUBJECT TERMS Graphical User Interface, Electrical Power Systems, Visual Basic

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

AN ENHANCED GRAPHICAL USER INTERFACE FOR
ANALYZING THE VULNERABILITY OF ELECTRICAL POWER SYSTEMS TO

TERRORIST ATTACKS

Dimitrios A. Stathakos
Major, Hellenic Army

Hellenic Army Military Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Dimitrios Stathakos

Approved by: Javier Salmeron

Thesis Advisor

Kevin Wood
Second Reader

Jim Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis develops a Graphical User Interface (GUI) to represent electric

power grids subject to interdiction (attack) by terrorists. The work enhances the

prototypic One-line Diagram (OD) representations of electric power networks in

the VEGA 1.0 decision-support system (Vulnerability of Electrical Power Grids

Analysis, version 1.0). Conforming to Windows standards, the new OD GUI

incorporates advanced graphical features, which help the user visualize the

model and understand the consequences of interdiction. The new ODs also

capture the details of system restoration over time following an attack. The

enhanced OD GUI has been incorporated into the updated version of the system,

VEGA 2.0.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

DISCLAIMER

The reader is cautioned that computer programs developed in this

research may not have been exercised for all cases of interest. While every effort

has been made to ensure that the programs are free of computational and logic

errors, they cannot be considered fully validated. Any application of these

programs without the additional verification is at the risk of the planner.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION... 1

II. BACKGROUND ON VEGA .. 5
A. INTERDICTION PROBLEM ... 5
B. VEGA 1.0 ... 8

1. Application Overview .. 8
2. Database Management System .. 12

III. ONE-LINE DIAGRAMS FOR VEGA 2.0 ... 15
A. INTRODUCTION.. 15
B. DATA MODEL ARCHITECTURE FOR THE OD 16

1. Buses Data Structure .. 18
2. Lines/Transformers Data Structure...................................... 19

C. ADDFLOW ACTIVEX CONTROL.. 20
1. General Description... 20
2. AddFlow Object ... 21
3. Node and Link Objects.. 22
4. Useful Features.. 26

D. VISUAL REPRESENTATIONS OF OBJECTS IN VEGA 2.0 26
1. Bus Object.. 26

a. Bus Node (Bus) ... 28
b. Busline Node (BusLine).. 30
c. Generator Node (BusGen).. 31
d. Load Node (BusLoad)... 31
e. Label Node (BusLabel) ... 32
f. A Special Case of Label Node (BusLabel):

Substations ... 33
2. Transformer Object ... 33
3. Line Object ... 34
4. TransLine Object ... 36

E. CONNECTIVITY WITH THE VEGA DATABASE............................... 37
1. Initial Representation .. 37
2. Edit Mode.. 39
3. Run Mode ... 41
4. Database Update.. 41

F. AUTOMATED LAYOUT OF THE INITIAL NETWORK...................... 41
1. General Considerations .. 41
2. Bus Objects.. 42
3. Load, Generator and Label Nodes within the Bus Object .. 42
4. Line Objects ... 44
5. Transformer Objects ... 46

IV. ONE-LINE DIAGRAM GUI.. 49

 x

A. OVERVIEW .. 49
B. THE ONE-LINE DIAGRAM GUI SCREEN... 50

1. Overview... 50
2. Toolbar Area... 52
3. Scenario Display Area... 52
4. One-Line Diagram Area... 54

C. THE TOOLBAR.. 55
D. EMPTY MODE ... 65

1. Introduction.. 65
2. First Time the OD GUI is Used.. 65
3. Bus Visibility and X-Y Coordinates 65
4. An OD Already Exists for the Case 67

E. EDIT MODE ... 68
1. Introduction.. 68
2. Toolbar Buttons ... 68
3. Working with the OD ... 68

a. OD Components.. 68
b. Movement .. 70
c. Information Displayed .. 73

4. Bus Dialogue.. 76
5. Line/Transformer Dialogue ... 78

F. RUN MODE.. 79
1. Introduction.. 79
2. Toolbar Buttons ... 80
3. Working with the OD ... 81

a. OD Components.. 81
b. Information Displayed .. 84

4. Bus Dialogue.. 87
5. Line/Transformer Dialogue ... 88

VI. CONCLUSIONS.. 91
A. CONCLUSIONS... 91
B. RECOMMENDATIONS FOR FUTURE WORK.................................. 92

APPENDIX. ADDFLOW USEFUL FEATURES.. 95

LIST OF REFERENCES.. 101

INITIAL DISTRIBUTION LIST ... 103

 xi

LIST OF FIGURES

Figure 1. Overview of the VEGA system. .. 9
Figure 2. Examples of Tabular Data Representation in VEGA 1.0. 10
Figure 3. Example of an OD in VEGA 1.0. .. 11
Figure 4. VEGA RDBMS Table Structure and Relationships............................. 14
Figure 5. BusData, SectorData, GenData UDTs. .. 17
Figure 6. LineData, TransData and TransLineData UDTs................................. 20
Figure 7. Addflow Object Example. ... 21
Figure 8. Deleting AddFlow Objects. ... 22
Figure 9. AddFlow Diagram Example. ... 25
Figure 10. The Bus Object... 27
Figure 11. Vertical Bus Representation. .. 28
Figure 12. Bus Object Connectivity. .. 29
Figure 13. BusLine Object. .. 30
Figure 14. Transformer Object... 34
Figure 15. Line Object. .. 35
Figure 16. TransLine Object. ... 36
Figure 17. Creation of ODs.. 38
Figure 18. OD Interface Architecture. .. 40
Figure 19. Generator, Load and Label Nodes Automated Positioning................. 43
Figure 20. Line Object Automated Positioning. ... 44
Figure 21. Special Cases of Line Object Automated Positioning......................... 45
Figure 22. Transformer Object Automated Positioning.. 46
Figure 23. Access to the OD GUI from the VEGA system................................... 49
Figure 24. OD GUI: Screen areas. .. 51
Figure 25. Toolbar Area... 52
Figure 26. Scenario Display Area in Run Mode... 53
Figure 27. One-Line Diagram Area.. 55
Figure 28. Options Window. .. 58
Figure 29. An OD Before (left) and After (right) Using Isofit. 61
Figure 30. Toolbar Customization Window. ... 64
Figure 31. Toolbar in Empty mode. ... 65
Figure 32. Bus X-Y Coordinates Window. ... 66
Figure 33. Toolbar in Edit Mode. ... 68
Figure 34. Bus Representation. ... 69
Figure 35. Line Representation. .. 70
Figure 36. Bus Movement. .. 71
Figure 37. Load and Generator Movement.. 71
Figure 38. Line Movement. .. 72
Figure 39. Bus Rotation... 72
Figure 40. Permanent Level of Information in Edit Mode..................................... 74
Figure 41. Tip Level of Information. ... 75

 xii

Figure 42. Bus Dialogue Window in Edit Mode.. 77
Figure 43. Line/Transformer Dialogue Window. .. 78
Figure 44. Toolbar Buttons in Run Mode... 80
Figure 45. First Level of Information in Run Mode... 83
Figure 46. Scenario Display Area. ... 84
Figure 47. Tip Level of Information in Run Mode... 86
Figure 48. Bus Dialogue in Run Mode... 88
Figure 49. Line/Transformer Dialogue in Run Mode.. 89

 xiii

LIST OF TABLES

Table 1. VEGA Data Tables. .. 12
Table 2. List of AddFlow properties (P), events (E) and methods (M). 96
Table 3. List of Node properties. .. 98
Table 4. List of Link properties. .. 99
Table 5. List of LinkPoint properties. .. 99
Table 6. List of Collection properties (P) and methods (M). 99

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Sincere Appreciation to

Prof Javier Salmeron & Prof Kevin Wood

For their patience and support.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

This thesis develops an improved graphical user interface (GUI) for the

analysis tool called VEGA (Vulnerability of Electrical Power Grids Analysis).

VEGA represents electric power grids subject to interdiction (attack) by terrorists

and helps to detect vulnerabilities and to identify system upgrades that will

harden the grid against attack (e.g., security-system improvements, capacity

expansion for backup purposes, etc.). This work contributes to the research

project “Optimizing the Electric Grid Design Under Asymmetric Threat.” The

need for analysis stems from concern about the potentially catastrophic

consequences to the United States’ economy and security that would result from

a well-planned terrorist attack on its electric power grid.

The VEGA system comprises a GUI, a supporting database (DB) and

optimization tools. The GUI helps prepare power network data for analysis, and

then displays analytical results, by enabling easy navigation through customized

tables and graphics containing problem data and results. This gives a user easy

access to the mathematical analysis of a problem even if he or she is not an

expert in mathematical modeling and optimization.

The thesis enhances an instrumental component of the VEGA GUI called

the One-line Diagram (OD) GUI. ODs are often used by electrical engineers to

represent electric power networks. The enhanced OD GUI incorporates

advanced features through a number of dynamic graphics that help the user

visualize the model and understand the effects of interdiction. These effects

include the quantity and location of “load shedding” (unmet demand for electrical

energy), and how this load shedding changes as the grid is repaired after an

attack.

The VEGA optimization module performs the mathematical analysis of the

problem independently of the GUI. The purpose of the GUI is to prepare the

case data to be analyzed and to retrieve and display the optimization results in a

 xviii

user-friendly fashion. The GUI in the existing system prototype, VEGA 1.0,

serves the first purpose well, and results can also be visualized in tabular form.

However, the OD representation in Vega 1.0 is limited and lacks the flexibility

required by DoD Human-Computer-Interface standards. Examples of needed

enhancements include object mobility and resizing, use of dialogues, zooming,

printing, and more extensive use of menus, controls, toolbars, and secondary

windows. The OD GUI developed in this thesis provides these enhancements.

In order to overcome certain graphical-design limitations in the Visual

Basic (VB) programming language in which the VEGA GUI is implemented, we

have incorporated a commercial ActiveX control called AddFlow. AddFlow is a

flexible programming object that allows us to create generic network diagrams.

We have customized the AddFlow object to generate ODs satisfying our

representational needs. This has been accomplished by adapting AddFlow’s

own features and combining them with other VB features.

The resulting GUI and its supporting relational DB are crucial for

organizing planning data, reducing clerical error through embedded validations,

completing missing details, filtering information according to user’s needs, and

displaying multiple scenarios with their results, for comparison purposes. The

GUI is also key for demonstrating the potential that optimization techniques have

for planning system upgrades to defend against potential attacks. The new OD

GUI is more flexible and user-friendly, and the new ODs can also help capture

the details of system restoration following an attack, that is, how load shedding

diminishes over time (days to weeks to months) as the system is repaired.

We have integrated the enhanced OD GUI into VEGA 1.0 to yield VEGA

2.0, which represents a substantial step towards a more comprehensive

decision-support system.

1

I. INTRODUCTION

The United States’ electrical power system is critical to the
country’s economy and security. The system’s vulnerability to
natural disasters or physical attacks has been recognized, but this
vulnerability has been increasing in recent years because: (a)
Infrastructure has not expanded as quickly as demand has, thereby
reducing the ’cushion‘ available when system components fail, and
(b) the probability of terrorist attacks has increased. [Salmeron et
al., 2003-II]

The U.S. Department of Justice, Office of Justice Programs and Office of

Domestic Preparedness is currently supporting the development of an integrated

system to analyze the vulnerability of electrical power grids to terrorist attacks

[Salmeron et al. 2003-I]. As part of this effort, research on optimization models is

being carried out, and improved models are being integrated into a decision-

support system called VEGA (Vulnerability of Electrical Power Grids Analysis).

The first prototype of this system, VEGA 1.0, is described in VEGA [2003].

VEGA 1.0 comprises a graphical user interface (GUI), a supporting

relational database (DB) and optimization tools. The GUI helps prepare power-

network data for analysis, and then displays analytical results, by enabling easy

navigation through customized tables and graphics containing problem data and

results. This gives a user easy access to the mathematical analysis of a problem

even if he or she is not an expert in mathematical modeling and optimization.

VEGA 1.0’s core is an optimization model that assesses the maximum

possible disruption a network might experience from a terrorist attack.

(Eventually, VEGA will directly plan for reducing the consequences of interdiction

by selecting cost-effective protective measures.) Naturally, this core can operate

as independent entity, and its operation is, in fact, transparent to a user.

The GUI and DB are the keys to organizing planning data, reducing

clerical error through embedded validations, completing missing details, filtering

information according to users’ needs, and displaying multiple scenarios with

their results, for comparison purposes. The GUI is also the key for

2

demonstrating the potential that optimization techniques have in this important

area of research, and enables decision-makers in the government and electric

utilities to work with our models in a setting they can easily understand.

The thesis focuses on creating an enhanced GUI (and supporting DB, as

needed) of the existing VEGA 1.0. The upgraded prototype refines and extends

multiple features, becoming the VEGA 2.0 system.

The most important improvement that VEGA 2.0 provides is an advanced

graphical representation of One-Line Diagrams (ODs). An OD is a graphical

representation of an electric power system that displays three-phase

interconnections with a single line, along with transformers, generating units,

buses and other electrical devices and protective equipment [Chan 1990]. One

of the first windows-based user-friendly tools that incorporates ODs is described

by Overbye et al. [1995]. The OD representation of electric power grids in VEGA

2.0 is called an “OD GUI.”

The OD GUI In VEGA 2.0 is more flexible than the one in VEGA 1.0 and

improves the user’s ability to interact with the graphical display, both in terms of

data input and result output. The new ODs can also capture the details of

system restoration, over time, following an attack.

VEGA 2.0 conforms to Windows GUI and DoD Human-Computer Interface

standards [DOD, 2002] to a large extent, with extensive use of menus, controls,

toolbars, and secondary windows, using either mouse or keyboard navigation.

The enhanced OD GUI arranges screens, menus, and objects in general, to

make the navigation process simpler and more logical.

The following provides an outline of the remainder of this thesis: Chapter

II reviews the existing VEGA 1.0 environment, focusing on the system GUI and

database; Chapter III addresses an audience with a programming background

who may be interested in understanding the objects and data structures behind

VEGA 2.0’s OD GUI. A detailed description of the implementation includes grid

component reshaping, explicit depiction of power flows, dynamic user input, etc.

Objects and functions that are new to VEGA are illustrated; Chapter IV provides

3

a detailed, user-oriented description of the OD GUI, concentrating on the most

important features of the enhanced ODs and their use in analysis. The chapter

also includes certain technical details for those interested in the more specialized

aspects of the implementation (which are not included in Chapter III because

they require additional understanding about how the user and the OD GUI

interact); Chapter V contains conclusions and recommendations for future work.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND ON VEGA

The purpose of this chapter is to provide the reader with an overview of

the existing VEGA system, VEGA 1.0 [VEGA 2003]. We focus on the system

GUI and DB, but the overview is incomplete without a brief description of the

underlying interdiction model and the power-system components that are

represented in that model. We begin with that description. (See Salmeron et al.

[2003-II] for more detail.)

A. INTERDICTION PROBLEM
Electric power grids are complex systems comprising thousands of electric

devices such as generating units, transmission lines and distribution lines. The

“backbone” of the grid is the high-voltage transmission network, typically

consisting of lines rated at 69 kV or above. Since this network carries large

amounts of energy over long distances in a concentrated fashion, it is an

attractive target for terrorists to attack. That is, the disabling of just a few key

components in this network could cut off electrical service to huge numbers of

customers over a wide geographic area. (This contrasts with a low-voltage

distribution network that connects customers to the transmission network, and

which covers a comparatively small area; the disruption of such a network would

have a relatively modest effect.)

Mathematical models in Salmeron et al. [2003-II] describe the problem of

optimally disrupting an electrical transmission network by selectively interdicting

(attacking) a limited number of its components. (Ultimately, models will be

developed to harden a network against interdiction, but the first step in doing this

is to understand optimal interdiction.) The interdictor’s model seeks to use

limited interdiction resources to maximize “disruption” which is the amount or cost

of the energy shed. Disruption is measured by solving one or more optimal

power flow problems given the network’s post-interdiction configuration or

configurations. (The network will typically experience a sequence of

6

configurations as interdicted components are repaired or replaced over time.) An

algorithm to (approximately) solve this bi-level max-min problem is also

described. The models and algorithm are implemented as a module of the

VEGA system. The following briefly defines the general concepts related to

electric power networks and interdiction as used in VEGA. (Some of these

definitions have been obtained from the Energy Information Administration [EIA

2003] and Elec-Saver [2003].)

Transmission: The movement or transfer of electric energy over an

interconnected group of lines and associated equipment between points of

supply and points at which it is transformed for delivery to consumers, or is

delivered to other electric systems. Transmission is considered to end when the

energy is transformed for distribution to the consumer.

Transmission System (also referred to as Electric Power Grid, Electric

Network and Electric System in this thesis): An interconnected group of electric

transmission lines and associated equipment for moving or transferring electric

energy in bulk between points of supply and points at which it is transformed for

delivery over a lower-voltage distribution system to consumers, or is delivered to

other electric systems.

Generating Unit (or Generator): Any combination of physically connected

generator(s), reactor(s), boiler(s), combustion turbine(s), or other prime mover(s)

operated together to produce electric power.

(High-voltage) Transmission Line: The high-voltage (≥ 69 kV in the U.S.)

conductors used to carry electrical energy from one location to another.

Bus (or Busbar): A heavy, rigid electrical conductor that makes a common

connection between several electrical circuits.

Transformer: A static electrical device which, by electromagnetic

induction, regenerates AC power from one circuit into another and/or changes

the voltage of alternating current.

7

Load: Demand for electricity (MW) at a specific point in time.

Consumer Sector: A type of load with specific requirements (e.g., amount

of power demand and cost for failing to provide it),

Substation: Facility with equipment that switches, changes, or regulates

electric voltage and current.

Interdiction Resource: A numerical value associated with a mathematical

expression that represents the capacity of terrorists to carry out attacks. For

example if such an expression has the form: “(3 × total number of attacks to

buses) + (1 × total number of attacks to lines) ≤ 5,” then “5” is the interdiction

resource.

Scenario: A particular value of the interdiction resource. In VEGA, we

analyze the worst-possible Interdiction Plans (see below) for user-selected

scenarios.

Interdiction Plan: Specific subset of the electric system equipment that

might be interdicted by terrorists. Optimal or near-optimal interdiction plans are

identified in VEGA for given interdiction-resource scenarios.

Power Shed: Amount of power (MW) that cannot be supplied to a load or

loads (one or several customer sectors) at a specific point in time.

Energy Shed: Amount of energy (MWh) that cannot be supplied to the

load (one or several customer sectors) over the course of a given time period.

Disruption: The cost of power shed in dollars/hour or the cost of energy

shed in dollars, as a consequence of implementing an interdiction plan.

Period (of Restoration): Each of the stages that an electric power network

undergoes following an attack, as interdicted components are repaired or

replaced over time.

One-line Diagram (OD): Schematic drawing of an electrical power system

that uses graphical symbols to represent electrical equipment such as buses,

generators, loads, transmission lines and transformers. It may incorporate

8

numerical values for the system, such as line power flows, generating unit

outputs, bus voltages, etc. We also adapt our ODs in VEGA to represent

interdicted equipment.

Optimization Parameters: Input data to control the interdiction-

optimization process within VEGA. These data include the maximum number of

iterations for the module’s algorithms and the solver engine to be used, among

others.

Case: A set of network data to be analyzed, along with the results of the

analysis. Each case covers a single power grid, including all physical data (i.e.,

network data such as line impedances, generating capacities, etc.), non-physical

data (e.g., interdiction resource, optimization parameters, etc.) and results. In

VEGA, we can create a new case instance, import a case from external sources,

save a case, open an existing case and delete a case. All of the data and/or

results are lost when the user makes modifications without “saving as” a different

case first. A case can have one or several scenarios as part of the analysis, and

all of these are still considered as part of the same case.

B. VEGA 1.0
1. Application Overview
VEGA is an integrated decision-support system comprising a GUI, a

relational DB management system (RDBMS), an optimization module and an

administration program that controls the aforementioned components (Figure 1).

VEGA 1.0 is the first version of this system and has been built on the Microsoft

(MS) Windows 2000 operating system [Microsoft 2003].

9

Figure 1. Overview of the VEGA system. The system’s core is an administration
program responsible for the interconnections and the exchange of information between
the GUI, the Relational DB Management System (RDBMS), and the optimization
module. The last two modules are transparent to the user.

The administration program and the GUI are implemented in the MS

Visual Basic (VB) 6.0 programming language [Microsoft 1998, 2003-I], [Balena

1999] supported by a RDBMS implemented with MS Access 2000 [Microsoft

2003-II]. The underlying optimization module is implemented using GAMS

[GAMS 2003, Brooke et al. 1996]. Data transfer and synchronization of the GUI

with GAMS are performed by means of plain ASCII files, because GAMS is not

available as a callable or dynamic library; therefore, GAMS executes as an

external program.

The front-end application responsible for the VEGA GUI uses a Windows-

based methodology that facilitates for the user:

person

ASCII Common Files

Optimization Module

Administration
Program

RDBMS

4
2 1

4 5

Graph

G U I

Physical Data - Cases
Storage

10

• Network data input,

• Other data input, including possible scenarios, optimization

parameters, etc.,

• Analyzing results provided by the optimization model,

• Graphical display of the network, input data, and output results, and

• Administration of multiple cases with several scenarios per case.

Figure 2. Examples of Tabular Data Representation in VEGA 1.0. The table in the
foreground contains data for the electric system buses, whereas the one in the
background contains data for generators.

The GUI in VEGA 1.0 uses VB tables in order to import data from the

database, and edit the records associated with a problem. Figure 2 shows an

example of data tables for Buses and Generators.

Upon completing all necessary data entry, the user can invoke the

optimization module in order to produce optimal (or near-optimal) interdiction

plans. These plans can be displayed in tabular form similar to those in Figure 2.

(Of course, the ultimate value of these plans is to help the user identify critical

11

system components. It is these components that must be hardened, protected or

backed up by spares, to reduce the potential for large disruptions.)

VEGA 1.0 can also display ODs (Figure 3) but they have limited design

capabilities, they lack some basic features such as object mobility, zooming and

printing, and their objects are not constructed following appropriate design

standards.

Figure 3. Example of an OD in VEGA 1.0. Buses (heavy black lines), loads (blue
arrows), generators (blue circles) and labels are designed with little mobility. There are
no dialogue windows to allow user interaction and direct access to local data or results
(i.e., for a specific component). Zooming is poorly designed: objects are not actually
zoomed, but spaced away from (or made closer to) each other. Other features to
increase usability, such as printing or exporting the OD to other applications are not
implemented.

12

2. Database Management System
The underlying relational DB of VEGA 1.0 consists of tables and

relationships. Tables contain the data for the incumbent electrical network, along

with optimization results (if any) produced by the optimization module. The

relational structure ensures data uniqueness and data integrity and performs part

of the necessary validations. The DB allows scaling the application to fit

problems of different dimension.

The tables that hold the initial information of a case and parameters for the

optimization model are:

Table Name Description

Bus
Physical data for each bus and graphical data for the

representation of the bus in the OD

Bus_Sector Data for each customer sector at every bus

Generator Physical data for each generating unit

Line
Physical data for each line and each transformer and

graphical data for the representation of the line in the OD

Sector Physical data for each customer sector

Substation Physical data for each substation

Opt_Parameters Optimization parameters

Plan General data about the incumbent plan or case

Table 1. VEGA Data Tables.

Using the data in Table 1, VEGA’s optimization model (Salmeron et al.

[2003-II]) computes an “optimal interdiction plan,” i.e., an interdiction plan that

maximizes disruption, for every specified interdiction-resource scenario. . All

these plans are stored and can be displayed for comparison purposes.

13

The effects of an interdiction plan change as the grid’s interdicted

components are repaired over time. This time can be broken down into Periods

during which the level of disruption is may be assumed to be constant. The

tables used in the data model to store the results for every Scenario and for each

time Period:

• Scenario

• Scenario_Period

• Scenario_Sector_Period

• Scenario_Substation

• Scenario_Substation_Period

• Scenario_Bus

• Scenario_Bus_Period

• Scenario_Bus_Sector_Period

• Scenario_Generator

• Scenario_Generator_Period

• Scenario_Line

• Scenario_Line_Period

Each of these tables contains results at the specified level of detail. For

example, Scenario_Bus_Period contains results for every bus during each

possible period of restoration for each scenario. Typical results at this level for

the given scenario are whether the Bus is “in service” or not (during the period),

as well as the power generated and/or consumed at the bus.

VEGA uses the data tables and result tables to interact with the user.

VEGA 2.0, described in the following chapters, uses the same tables as VEGA

1.0.

Figure 4 depicts the overall relational structure of the database.

14

Figure 4. VEGA RDBMS Table Structure and Relationships.

15

III. ONE-LINE DIAGRAMS FOR VEGA 2.0

This chapter addresses an audience with a programming background who

may be interested in understanding the underlying objects and data structures

behind VEGA 2.0’s ODs. A detailed description of the implementation includes

grid component reshaping, explicit depiction of power flows, and dynamic user

input, among others.

A. INTRODUCTION
It is important for the reader to realize the variable and typically large

amount of data that VEGA must handle. Every case under analysis has a

different number of buses and lines (thousands of each in real cases), and

transformers (typically hundreds) [e.g., PowerWorld 2003, University of

Washington 2003]. Each bus also has a different number of generators and

customer-sector loads for each case under analysis. All these network

components have different behavior by scenario and period within each scenario.

This complex structure is determined “on the fly,” so that a user can create

and/or modify a network’s description at any time.

The requirement for data scalability, alluded to in the previous paragraph,

has been satisfied in VEGA 2.0 by designing and coding a runtime object-

oriented graphical data model following the DB model that was briefly introduced

in Chapter II, Section B.2.

It is worth noting that, although VB is an excellent language for creating

comprehensive GUIs, it lacks proper tools for creating the complex graphical

structures that VEGA requires. In order to overcome the graphical shortcomings

we have incorporated a third-party Microsoft ActiveX control [Microsoft 2003-II].

The data model for the OD and the new ActiveX control are described in the

following sections.

16

B. DATA MODEL ARCHITECTURE FOR THE OD
The data model for the advanced graphical representation of an OD

consists of native VB data types and User-Defined Types (UDTs). A UDT is a

compound data structure that holds several variables of simpler data types. For

that reason, UDTs are often used to represent database records, which also

consist of a number of related components of different data types.

For purposes of efficient execution, all the UDTs are created and stored in

a random-access memory data structure, which is an array of UDTs. To

minimize memory consumption, array sizes change dynamically during runtime

to accommodate all (but not more than) the necessary case data.

As a result, the OD data model consists of data objects that encapsulate

all the necessary information provided by the database, which may include

results if the optimization process has executed successfully. This allows each

data object to be the sole owner of its data. Every data object is created and

stored in a dynamically sized array at the beginning of the OD GUI execution.

One of the advantages of this data architecture is that data are stored in a

memory area that can be accessed directly through VB code by just supplying

appropriate array names and indices (see below).

The main UDTs, BusData, SectorData, GenData, and

LineData/TransData/TransLineData) are defined as Public in separate VB

modules, called Buses, Sectors, Generators and Lines, respectively. These

UDTs can be used as arguments for Private and Friend procedures defined in

any type of module in the VB project for the VEGA GUI. They can also be used

as arguments in Public procedures defined in any VB modules of the application,

although not in other types of modules such as forms, MDI forms or user

controls.

There is one module for each main UDT. The secondary UDTs (Scenario,

Period, Point) are defined as Private inside each main UDT module. With this

design, we can use the same name for secondary UDTs containing different

elements, but using the same reference style for all the main UDTs. For

17

example, consider how this architecture is used to retrieve information from (or to

pass data to) the OD data model:

Figure 5. BusData, SectorData, GenData UDTs. Hierarchy is represented with a
Unified Modeling Language diagram. Each subordinate UDT may exist one or more
times (1..*) as a part of a hierarchy-higher UDT. For example a Period UDT may exist
one or more times as a part of a Scenario UDT.

Assume that we would like to refer to a given data attribute called “angle”

associated with period 1 in scenario 5 for generator 1 of bus 7. We would use

the following code for that purpose:

allBusData(7).generators(1).scenarios(5).periods(1).angle

+allBusData() : BusData
Buses

-index : Integer
-code : String
-name : String
-codeSub : String
-position : Point
-loadPosition : Point
-load : Double
-genPosition : Point
-maxGen : Double
-labelPosition : Point
-interdictable : Boolean
-interdiction : Double
-intDur : Long
-userInterdicted : Boolean
-generators() : GenData
-sectors() : SectorData
-scenarios() : Scenario

UDT::BusData

-code : String
-name : String
-busCode : String
-minGen : Double
-maxGen : Double
-genCost : Double
-interdictable : Boolean
-interdiction : Double
-intDur : Long
-userInterdicted : Boolean
-scenarios() : Scenario

UDT::GenData
-code : String
-busCode : String
-load : Double
-cost : Double
-scenarios() : Scenario

UDT::SectorData

1..*

1

1

1..*

1

1..*

-Left : Long
-Top : Long

UDT::Point

1

*

Public

Private

-inService : Boolean
-pGen : Double
-pCost : Double
-eGen : Double
-eCost : Double

UDT::Period

-inderdicted : Boolean
-indInterd : Boolean
-periods() : UDT::Period

UDT::Scenario

1

1..*

1
1..*

-periods() : UDT::Period
UDT::Scenario

1

1..*

-pMet : Double
-pShed : Double
-pShedCost : Double
-. . .

UDT::Period

1

1..*

-inderdicted : Boolean
-indInterd : Boolean
-periods() : UDT::Period

UDT::Scenario

1

1..*

-inService : Boolean
-angle : Double
-pGen : Double
-pMet : Double
-pShed : Double
-. . .

UDT::Period

1
1..*

18

Likewise, the reference for attribute “pMet” associated with period 1 in scenario 5

for sector 1 of bus 7 would be:

allBusData(7).sectors(1).scenarios(5).periods(1).pMet

Notice that we are using the same data structure even if generators and sectors

have totally different scenario and period UDTs.

1. Buses Data Structure
Figure 5 shows the data structure for a system bus in the OD GUI. We

next describe the role played by each UDT within the data structure.

• Point UDT

The Point defines the Left and Top position of a bus and its

components (e.g., customer sectors and generating units) within the OD

graphical representation on the screen. It consists of two Long VB data types

where the positions are stored in twips. (A twip is 1/20 of a printer’s point; 1,440

twips equal one inch). By default, all VB movement, sizing, and graphical-

drawing use a unit of one twip. These measurements designate the size an

object will be when printed. Actual physical distances on the screen vary

according to the monitor size.

• BusData UDT

The BusData UDT consists of a number of VB data types, four

Point UDTs for positioning bus components on the user’s screen, and three

dynamically created arrays of Scenario, SectorData and GenData UDTs. Each

BusData UDT contains all the information for a specific Bus in the electrical

network, such as identification characteristics, location, power flows and

interdiction behavior.

• Period UDT

A Period UDT consists of a number of simple VB data types, which

depend on the associated electrical network component. For example as we can

see in Figure 5, the Period UDT associated with BusData UDT has different

19

elements than the Period UDT associated with GenData UDT, because they play

a different role in an electrical network.

• Scenario UDT

A Scenario UDT consists of two simple VB data types and one

dynamically created array of Period UDTs. With this structure, we ensure each

scenario has the exact number of periods required to accommodate the results

that depend on the specific time-frame of the scenario.

• SectorData and GenData UDTs

Each of these UDTs consists of a number of simple VB data types

and one dynamically created array of the Scenario UDT. The associated sector

and generator have their own user-defined internal data along with the solution-

result data once the model is successfully optimized.

2. Lines/Transformers Data Structure
The Lines/Transformers data architecture (see Figure 6) is similar to the

Bus data architecture. The only difference worth noting is the fact that the

Lines/Transformers data structure contains three separate and dynamically

created arrays: One for use by the line UDTs (allLineData), another for the

transformers UDTs (allTransData) and one special UDT for lines that connect

buses to transformers (allTransLineData). The reason for using three UDTs is

the different behavior of the objects they represent. (This will be clarified when

the Transformer object and the TransLine object are described in Section D).

20

Figure 6. LineData, TransData and TransLineData UDTs. Hierarchy is represented
with a Unified Modeling Language diagram. Each subordinate UDT may exist one or
more times (1..*) as a part of a hierarchy-higher UDT. For example a Point UDT may
exist one or more times as a part of a LineData UDT.

C. ADDFLOW ACTIVEX CONTROL

1. General Description
In order to overcome the limitations of the VB language for graphical

design, we use a third-party Microsoft ActiveX control called AddFlow (version

4.2) [Lassalle 2003] instead of the VB native graphical tools. This control has

-index : Integer
-code : String
-name : String
-orgItem : String
-dstItem : String
-Point1 : Point
-Point2 : Point
-Point3 : Point
-Point4 : Point
-maxFlow : Double
-resistance : Double
-reactance : Double
-labelPosition : Point
-interdictable : Boolean
-interdiction : Double
-intDur : Long
-userInterdicted : Boolean
-scenarios() : Scenario

UDT::LineData

+allLineData() : LineData
+allTransData() : TransData
+allTransLineData() : TransLineData

Lines/Transformers

-index : Integer
-code : String
-name : String
-orgItem : String
-dstItem : String
-maxFlow : Double
-resistance : Double
-reactance : Double
-labelPosition : Point
-interdictable : Boolean
-interdiction : Double
-intDur : Long
-userInterdicted : Boolean
-position : Point
-direction : Integer
-numBusLineOrg : Integer
-numBusLineDst : Integer
-scenarios() : Scenario

UDT::TransData
-index : Integer
-code : String
-orgItem : String
-dstItem : String
-Point1 : Point
-Point2 : Point
-Point3 : Point
-Point4 : Point
-transIndex : Integer
-numOfOrg : Integer
-numOfDst : Integer

UDT::TransLineData

1

1..*

1

1..*

1

1..*

-Left : Long
-Top : Long

UDT::Point
-Left : Long
-Top : Long

UDT::Point

-Left : Long
-Top : Long

UDT::Point

Public Private-inderdicted : Boolean
-indInterd : Boolean
-periods() : Period

UDT::Scenario

1

1..*

1

1..*

-inService : Boolean
-flow : Double

UDT::Period

1

1..*

21

been implemented by Lassalle Technologies using Visual C++ 6.0 [Microsoft

2003-II] and is based on the Microsoft Foundation Class.

A Microsoft ActiveX control [Microsoft 2003-II] is a set of technologies that

enable software components to interact with one another in a networked

environment, regardless of the language in which the components were created.

Currently, ActiveX is used primarily to develop interactive content for the World

Wide Web, although it can be used in desktop applications and other

applications. ActiveX controls can be embedded to produce animation and other

multimedia effects, interactive objects, and sophisticated applications.

The AddFlow ActiveX control allows us to create instances of so-called

AddFlow objects, which are actually complete diagrams that can be added to any

VB form.

2. AddFlow Object
The AddFlow object is the container of one or more Node objects that can

be coupled to each other by Link objects. Each time a Node is created, it is

stored inside an object collection called Nodes where Line objects are stored

inside a collection called Lines. The visible part of the Addflow object is the

AddFlow diagram. Figure 7 shows a typical three-node three-link example of

such a diagram.

Figure 7. Addflow Object Example. Three Node objects (“Node A,” “Node B” and
“Node C”) are connected to each other by three Link objects (“Link A,B”, “Link B,C” and
“Link C,A”).

22

Nodes are the basic objects of an Addflow diagram, and Links are meant

to connect Node objects. Both Node objects and Link objects have many

attributes that can be changed at design- and/or run-time, such as color, text,

drawing style and font.

Nodes may be moved or resized whereas Links may be stretched and

divided into several segments in order to follow the route the user decides. For

consistency, a Link cannot exist without its origin and destination nodes. If either

of these two Node objects is removed, any associated Links are also removed.

For instance, if we remove Node C from the example of Figure 7, the Addflow

object automatically deletes the two links associated with Node C, namely links

C,A and B,C; see Figure 8.

Figure 8. Deleting AddFlow Objects. The two-node, one-link diagram is the result
of deleting Node C from the diagram in Figure 7. Node C’s deletion also causes the
deletion of Link B,C and Link C,A.

3. Node and Link Objects
A Node object is created by using the Add method of the Nodes collection,

which stores the list of all Nodes in a given AddFlow object. The Add method

allows the programmer to specify both the position and the size of the Node that

is being created. The Node object type name is afNode.

For example, the following code creates a Node object by first instantiating

it and then adding it to the Nodes collection:
Dim nBus As afNode

Set nBus = addFlow.Nodes.Add(position.Left, position.Top, iHeight,

iWidth)

When it is created, a Node receives default values for most of its

attributes. Some of the Node attributes are:

23

• Size: Height, Width.

• Colors: Drawing color; Text color; Fill color.

• Drawing pen: Style; Width.

• Shape: Allowed shapes are rectangle, ellipse, etc.

• Text: Alignment; Autosize mode; Transparency; Font.

For example, if we want to create a black circular Node, we can do that by

setting the Shape property to “afEllipse,” and the DrawColor property to

“vbBlack.” The circle shape is produced by setting Node.Height equal to

Node.Width. Additionally we can associate text, a picture or user data to be

displayed with the Node.

Nodes are collected into the Node collection. Each Node has two

collections of Link objects. One for the outgoing Links (OutLinks) and another for

the incoming Links (InLinks). Which Link objects are considered outgoing or

incoming for a Node is decided at the time the Link is created.

A Link object allows linking two Nodes. It is created programmatically by

using the Add method of the OutLinks or InLinks collections in order to associate

the Link with the Nodes. By construction of the Link object, we establish which

Node is deemed the origin (or destination) of the Link. The other Node object in

the declaration of the Link automatically becomes the destination (or origin) Node

of the Link. To accomplish this, we directly create the Link as part of the

OutLinks collection of the origin Node, which automatically adds the Link to the

InLinks collection of the destination Node. Alternatively, we can create the Link

as part of the InLinks collection of the destination Node, which automatically adds

the Link to the OutLinks collection of the origin Node (see code below). OutLinks

and Inlinks collections serve the equivalent purpose for Link objects as the Node

collection for Node objects. The Link object type’s name is afLink.

The following code creates a Link object (identified as “line”) by first

instantiating and then adding it to the OutLinks collection of the origin Node

24

(identified as “node1”). This “line” is also automatically added to the Inlinks

collection of the destination Node (identified as “node2”):

Dim node1 As afNode

Dim node2 As afNode

Dim line As afLink

Set line = node1.OutLinks.Add(node2)

Graphically, this code draws a line from the so-called “origin” Node object

to the “destination” Node object. In the previous example, “node1” is the origin

and “node2” is the destination Node. Alternatively, the following code produces

the same result as above, because we add the Link object “line” to the InLinks

collection of “node2”:

Dim node1 As afNode

Dim node2 As afNode

Dim line As afLink

Set line = node2.InLinks.Add(node1)

When it is created, the Link also receives default values for most of its

attributes. Some of the Link attributes are:

• Colors: Drawing; Text

• Drawing pen: Style; Width

• Arrow shape: ArrowOrg; ArrowDst; ArrowMid

• Text: Font

A Link may have several segments in order to represent graphically the

route the user wants the link to follow. Graphically we can identify segments by

locating “elbow points” on a Link object. For example in Figure 9, the Link object

between the two Node objects has two segments. The default behavior is that

25

the first segment is directed toward the center of the origin Node object and the

last segment is directed towards the center of the destination Node object.

Every Link object has a “LinkPoints collection.” A LinkPoints collection

has at least two elements (called “linkpoints”) which graphically represent the

ending points of each segment in the Link. For instance, if a Link has three

concatenated segments, its LinkPoints collection contains four points. If we

delete the LinkPoints collection by using the clear method, then the number of

points is reset to two, and the Link becomes a straight, one-segment Link.

The ability to add or remove segments from a Link object is enabled only if

the LinkStyle property of the Link object has set to afPolyline. Otherwise, the

Link object has a constant number of segments depending on the LinkStyle

property. For convenience, all the Links in the OD GUI have the LinkStyle

property set to afPolyline (i.e., we may add or remove points to that collection at

run-time), although, as we shall see later in this chapter, the user will not be

allowed to increase the number of Link segments to more than three.

Figure 9. AddFlow Diagram Example. We connect a black rectangular node
named “First node” to a blue circular node named “Second node” through a red elbowed
link consisting of two segments and three linkpoints (the elbow-point and the two
segment-ending points).

The following self-commented code is an excerpt from a VB program

which, at some point, creates the diagram in Figure 9:

26

' Create two nodes and link them.

Dim node1 As afNode, node2 As afNode
Dim link As afLink

' Define a default fill color for next created nodes and links
AddFlow1.DrawColor = RGB(0, 0, 0) ' Default Drawing color = Black
' Define a default shape for next created nodes
AddFlow1.Shape = afRectangle ' Default shape = rectangle

' Create a blue rectangular node and associate a text to this node
' .Add(left, top, width, height)
Set node1 = AddFlow1.Nodes.Add(100, 100, 500, 500)
node1.Text = "First node"

' Create a blue elliptic node and associate text to this node
Set node2 = AddFlow1.Nodes.Add(2000, 1000, 800, 800)
node2.DrawColor = RGB(0, 0, 255) ‘ Blue color node
node2.Shape = afEllipse
node2.Text = "Second node"

' Create a red link between node1 and node2
Set link = node1.OutLinks.Add(node2)
link.DrawColor = RGB(255, 0, 0) ‘ Red color link
' Add an elbow point with specific coordinates
link.ExtraPoints.Add 800, 1400

4. Useful Features
The Appendix describes the features of Addflow objects used most

frequently during the implementation of the enhanced OD GUI.

D. VISUAL REPRESENTATIONS OF OBJECTS IN VEGA 2.0
Every OD in the new OD GUI implemented in VEGA 2.0 comprises a set

of objects of type Bus, Line, Transformer and TransLine. We next describe each

of these object types in detail.

1. Bus Object
The most important and complex object of the OD is the Bus object

(Figure 10). It is created during runtime by using five AddFlow Node objects and

six Link objects, each one with its own independent properties and methods.

The Bus object is the container Node of all these objects.

27

Figure 10. The Bus Object. Every dashed box represents a Node object. The
numbering for nodes (0 to 4) indicates the order in which Nodes are created. The two
Link objects are used to convey the visual effect that the Load and the Generator objects
are anchored to the BusLine.

It is important to note that, for purposes of graphical representation,

multiple loads and generators connected to the same Bus are aggregated into a

single load and generator, respectively. If no load is connected to the bus, none

is displayed (the corresponding object still exists but becomes invisible), and

likewise for generators.

The identification of Nodes in a Bus object has been controlled by means

of a numerical index that characterizes the role the Node object plays within the

Bus Object. These Nodes (sometimes referred to as “subnodes” given their

dependence on the Bus Object) are explained in detail in the following

paragraphs.

591

265

113

NODE 4
BUSLABEL

NODE 4
BUSLABEL

LINK
BUSGEN – BUSLINE

LINK
BUSGEN – BUSLINE

LINK
BUSLOAD – BUSLINE

LINK
BUSLOAD – BUSLINE

NODE 1
BUSLINE
NODE 1

BUSLINE

NODE 0
BUS

NODE 0
BUS

NODE 3
BUSLOAD
NODE 3

BUSLOAD

NODE 2
BUSGEN
NODE 2
BUSGEN

28

Figure 11. Vertical Bus Representation. The Bus in Figure 10 has been rotated 90
degrees clockwise to be positioned vertically.

a. Bus Node (Bus)
The Bus Node is an invisible rectangular Node that can be

considered the core of the Bus object. It is used as a container for the

construction of the other Node and Links of the Bus object. This is achieved by

linking the center of the Bus node with all the other Nodes with rigid, non-

selectable and hidden Links. Every movement of a Bus Node “pulls” its

subnodes along with it, which creates the desired visual effect for label, the load

and the generating units to be anchored to the Bus.

Another useful result of this design (for programming purposes) is

the special connectivity rendered by Links between the Bus Node and the other

subnodes of the Bus object. The Bus Node is always the origin (.org) of the

OutLinks, and the other subnodes are the destination Nodes (.dst) (Figure 12).

For example, assuming we know the Bus object (“nBus”) to which a

BusLabel object (“nBusLabel”) belongs, we will use the following VB expression

to refer to the BusLabel,
 Set nBusLabel = nBus.OutLinks.Item(4).dst

where the index “4” refers to the fourth item in the OutLinks collection of Node

“nBus.” That item is precisely a Link object (Bus – BusLabel, Figure 12), whose

destination Node is a BusLabel object identified as “nBusLabel.”

113

591

265

113

591

265

29

Figure 12. Bus Object Connectivity. Invisible Links (dashed lines) connect the
center of the Bus Node (large dotted box) to all the other sub-Nodes (small dotted
boxes) in the Bus object. The Links are added to the OutLink collection of Bus Node.

This design lends itself to using properties and applying methods to

multiple Nodes and Links in a Bus object in a flexible fashion. As an example,

the following excerpt from VB code shows how to paint, using a specific color, all

bus components within a subset of selected Buses in an AddFlow diagram:

For Each nBus in AddFlow.Nodes

If nBus.Selected Then

 For Each line In nBus.OutLinks

 If line.Rigid Then ‘Pick only the rigid lines

 line.dst.DrawColor = color ‘Paint the destination of line

 End If

 Next

Endif

Next

Our OD design has been setup with Bus Nodes covering a fixed

area of 1,800×1,800 twips on the initial screen. This is a user-modifiable

property. Any click inside this area is an event controlled by the Bus Node

object.

OUTLINK 2
BUS – BUSLOAD

OUTLINK 2
BUS – BUSLOAD

OUTLINK 1
BUS – BUSGEN

OUTLINK 1
BUS – BUSGEN

OUTLINK 4
BUS – BUSLABEL

OUTLINK 4
BUS – BUSLABEL

OUTLINK 3
BUS – BUSLINE

OUTLINK 3
BUS – BUSLINE

Nodes

Links

30

An important property of the Bus Node object is the Bus.UserData

because it links every Bus object to the Bus UDT. The following example shows

how this is accomplished by transferring data from the Bus UDT to VB form

controls for a selected Bus, which will ultimately make use of these data:

busIndex = busSelected.UserData ‘index number of Bus object

lblBusCode = allBusData(busIndex).code ‘fill a VB Label control

txtName = allBusData(busIndex).name ‘fill a VB Text Box control

b. Busline Node (BusLine)
A BusLine Node is an object that represents an electric busbar. It

is also the Node where Link objects representing electric transmission lines

originate or terminate.

A BusLine is created as a long narrow rectangular Node, displayed

horizontally in the middle of the Bus Node object (Figure 13). Graphically, it

represents the actual bus symbol used in and OD. The BusLine Node has the

same width as the Bus object and a height of 40 twips. It is not user-selectable;

therefore any click on BusLine area is still an event controlled by the Bus Node

object. Setting the property UserData of the Node object to “1” uniquely identifies

a Node as a BusLine Node.

Figure 13. BusLine Object. The generator Node (BusGen) and the load Node
(BusLoad) are connected to the bus-line Node (BusLine) through two visible Links that
are members of the InLink collection of BusLine Node.

591

265

113

INLINK 1
BUSGEN – BUSLINE

INLINK 1
BUSGEN – BUSLINE

INLINK 2
BUSLOAD – BUSLINE

INLINK 2
BUSLOAD – BUSLINE

31

BusLine Nodes are linked to Generator and Load Nodes with two

visible, non-selectable and non-rigid Link objects. These two links are created

during Generator and Load Node creation.

The following VB code shows how to refer to the BusLoad or the

BusGen associated with a BusLine:

Set nBusGen = nBusLine.InLinks.Item(1).org

Set nBusLoad = nBusLine.InLinks.Item(2).org

c. Generator Node (BusGen)
A Generator or “BusGen” Node is an object that represents one or

more generating units connected to a bus. It is displayed as a circle with free

movement anywhere in the Bus Node area. The movement is controlled

programmatically in order to keep the BusGen within the Bus Node. Initially, a

Generator Node covers a selectable area of 450×450 twips. Any mouse event

triggered inside this area is an event controlled by the Generator Node. This

Node type is uniquely identified through UserData for this subnode being set to

“2.”

The value of the BusGen Text property is displayed inside the

BusGen area (e.g., “591” in Figure 13). We use this property to show the value

of the total generating capacity at the bus (sum of maximum output for all

generators connected to the bus) or the actual output (total power injection at the

bus), depending on the display mode. If the total generating capacity at the bus

is zero, the BusGen Node is made “invisible.”

The BusGen Node is linked to the BusLine object with a visible,

non-selectable and non-rigid OutLink.

d. Load Node (BusLoad)
A Load or “BusLoad” Node is an object that represents one or more

loads connected to a bus. It is displayed as a triangle with free movement

32

anywhere in the Bus Node area. The movement is controlled programmatically

in order to keep the BusLoad within the Bus Node.

Initially, it covers a selectable area of 450×450 twips. Any mouse

event triggered inside this area is an event controlled by the BusLoad Node.

UserData is set to “3” to identify this subnode as a BusLoad Node.

As in the case of the BusGen Node, the number shown inside the

BusLoad area (e.g., “265” in Figure 13) is the value of the Text property of the

BusLoad Node. It is used to display either the total load at the bus (sum of loads

from all customer sectors at the bus) or the total load that has been met at the

bus, depending on the display mode. If the total load at the bus is zero, the

BusLoad Node is made “invisible.”

The BusLoad Node is linked to the BusLine of the Bus object with a

visible, non-selectable and non-rigid OutLink.

e. Label Node (BusLabel)
The BusLabel Label Node is displayed as a “transparent” Node with

free movement not only inside the Bus Node area but also outside that area for a

limited distance (this improves visualization, especially if its text is long and/or

other Line objects overlap with the BusLabel).

Like the other Bus subnodes, its movement is controlled

programmatically to keep the BusLabel in the desired area. The BusLabel Node

covers a selectable area of 600×450 twips. Any mouse event inside this area is

an event controlled by the BusLabel Node. UserData is set to “4” to identify this

subnode as a BusLabel Node.

The text inside the BusLabel is the value of Text property of the

BusLabel node, and it is used to display the bus code and the substation code

that the bus belongs to (if any).

33

f. A Special Case of Label Node (BusLabel): Substations
Buses associated with a particular substation will display the

substation code as part of the BusLabel code for the Bus.

Substations are not represented graphically as independent

objects. The main reason for not doing so is that a substation may consist of

several buses and transformers, whose relative location in the OD cannot be

anticipated. This makes complicated finding a proper “Substation” object that

can accommodate all possible situations. In addition, substations do not

represent a major source of data and/or results:

- Each substation consists of a number of transformers and buses

(which are already represented individually in the OD).

- Substation data is limited to interdiction parameters: Whether the

substation is interdictable or not, required interdiction resource to attack a

substation, and time to repair (if interdicted). This information is available from

the GUI Data Menu.

- Substation results are limited to whether or not the substation has

been interdicted, and whether it is “in service” or “out of service.” This

information will be represented in the OD as information associated with the

Buses, as will be described in Chapter IV.

2. Transformer Object
Like the Bus object, the Transformer object is created during runtime. A

Transformer object requires two Node objects and four Link objects, each with its

own properties and methods (see Figure 14).

The Trans Node is an invisible rectangular Node that can be considered

the core of the Transformer object. It is used as a container for the construction

of the other Nodes and Links of the Transformer object, holding them together.

34

Figure 14. Transformer Object. Consists of four Link objects (used to create the
familiar electrical-engineering symbol for a transformer) and two Node objects (“Trans,”
which contains the four Link objects, and “Translabel,” which contains a label). The Link
objects are members of the InLink collection of the Trans Node.

The Transformer comprises four AddFlow Links to represent the standard

symbol for an electrical transformer used in ODs. These Links are rigid, visible,

non-selectable, and they have specific coordinates for each LinkPoint. The

TransLabel Node is linked with a rigid, non-selectable and hidden Link to the

Trans Node. Every movement of the Trans Node forces all the connected

objects to follow it.

The TransLabel Node is displayed as a transparent Node. It has free

movement anywhere within the Trans Node area, and also outside that area for a

limited distance. Similar to the BusLabel object, this movement is controlled

programmatically.

The TransLabel Node covers a selectable area of 800×200 twips. Any

click inside this area is an event controlled by the own TransLabel Node. Its Text

property is used during runtime to display either the transformer identification

code or the power flow through the transformer, depending on the display mode.

3. Line Object
The Line object (Figure 15) is created as a Link object provided by

AddFlow. Accordingly, all the AddFlow Link properties and methods are also

A7

INLINK 1

INLINK 2

INLINK 3

INLINK 4

NODE 1
TRANSLABEL

NODE 0
TRANS

35

available for the Line object. In addition, we have implemented certain

restrictions in order to customize it for its use in the OD GUI.

Figure 15. Line Object. This is an AddFlow Link object with special characteristics:
It comprises three segments and four extreme points called LinkPoints. The first and the
third (outer) segments are connected to the second (inner) segment by two elbow-
points, which are two of the LinkPoints. The two other segment-ending points are one in
the first segment and another in the third segment. They connect these segments
perpendicularly to the origin and destination Bus Nodes of the Link.

A Line object always connects two Bus objects. Specifically, it connects a

Bus object (playing the role of origin Bus) by using a Link from any point on its

BusLine Node to another Bus object (playing the role of destination Bus) at any

point on its BusLine Node. (The differentiation between origin and destination

Bus objects is for programming purposes only, although it follows the values

entered by the user as “from” and “to” buses. This is simply a customary way to

let the user decide which direction of power flow is considered positive or

negative, which is important for mathematical computations.)

By default, AddFlow Link objects have multiple segments. For the

purpose of representing ODs, it suffices, and it is actually more practical, for a

Line to have no more than three segments. The first and the last segments are

AB2

LINE
ORG – DEST

LINE
ORG – DEST

LINKPOINT0

LINKPOINT1

ORIGIN (ORG)

DESTINATION (DST)

LINE TEXT

LINKPOINT2

LINKPOINT3

591

265

113

591591

265265

113

591265

113

591591265265

113

36

always directed perpendicularly to either BusLine Node, and the middle segment

connects the other two segments in whatever orientation they dictate.

A Line object has four LinkPoint objects where each LinkPoint is located at

either end of any of the three segments. The LinkPoints movement is controlled

programmatically so that the first and the last LinkPoints can move along the

BusLine only, whereas the middle ones can move towards or opposite to the

BusLine object.

4. TransLine Object
A TransLine object (Figure 16) always links one side of a Transformer

object to a Bus object. It is a Link from the origin BusLine (in the origin Bus) to

the destination Transformer at a certain connection point given by the

coordinates of the midpoint between the edges of the Trans Node.

Figure 16. TransLine Object. This is an AddFlow Link object, almost identical to the
Line object. TransLine objects connect a Bus object and a Transformer object.
LinkPoints for the upper Link are shown. The LinkPoint attached to the Transformer
object cannot be moved directly, but follows the transformer (Trans object) movement.

A TransLine object has no more than three segments and is identical to a

Line object except that the LinkPoint that is connected to the Transformer cannot

103
Sub_11

180

103
Sub_11

180180

124
Sub_11

124
Sub_11

A7A7

TRANSLINE

TRANSLINE

37

be moved. The TransLine object design is more convenient and flexible than

using a straight one-segment line to connect a BusLine and a Transformer,

because it allows movement along the BusLine,and also allows stretching the

two ending segments perpendicularly.

E. CONNECTIVITY WITH THE VEGA DATABASE
1. Initial Representation
Figure 17 summarizes the main processes involved in the creation of an

OD. Before an OD can be created, the user must provide X-Y-coordinates (in

any reference system) for each bus in the electrical network. That is, in fact, the

only input VEGA 2.0 needs in order to create an OD.

The function NewCoordinates() is an automated procedure (to be

described in Section F) that creates screen coordinates (twips) for each network

component in an OD being developed. Screen coordinates are stored in the

database to allow the user to retrieve previously generated ODs and their

modifications. In case that OD data already exist at the time of creating a new

OD, a warning message prompts the user to confirm the new OD creation action,

because that will permanently delete the previous OD and its data.

38

VEGA 2.0 GUI

Existing OD

New OD

All the data

AddFlow
ActiveX Control

FillArrays()

CreateArrays()

NewCoordinates()DataBase
Screen Coordinates

Original Coordinates

DataBase

DataBase
of Buses & Lines

of Scenarios & Periods

DesignBus()

DesignTransformer()

DesignLine()

DesignTransLine()

Data
Objects

OD GUI

Figure 17. Creation of ODs. There are two ways to create an OD, from scratch
using the “New OD” procedure, or by loading an existing OD saved in the DB using the
“Existing OD” procedure. The “New OD” procedure creates screen coordinates for all
the OD objects. Then, it invokes the “Existing OD” procedure to bring the OD up on the
screen. This procedure dynamically resizes memory arrays according to the number of
objects to be displayed. The procedure then fills the arrays with existing data, including
object screen coordinates. OD objects are physically instantiated as AddFlow objects,
and they are appropriately customized before being displayed.

If the user wants to build an OD from scratch, the OD GUI employs the

“New OD” procedure, which creates the aforementioned screen coordinates and

saves them into the DB. Then, “New OD” invokes the “Existing OD” procedure,

which not only retrieves these coordinates from the DB, but also transfers all the

existing information on the incumbent case (data and results, if any) into system

memory. Both coordinates and data are used to position electrical network

objects and their label values on the screen.

The CreateArrays() function checks the existing number of buses, lines,

scenarios and periods in the database, and dynamically creates the data

39

structure described in Section III.B. The FillArrays() function transfers the

information from the database to the previously created memory data structure.

The data entry for the Arrays is completed by a separate function because

of how VB handles the dynamic creation of arrays. In particular, it is significantly

faster to build the whole array structure first and then fill it with database

information, rather than creating the data structure and filling it from the database

in a piecemeal fashion.

The FillArrays() function is finished once it has created the OD graphical

objects as described in Section III.D.

The following snippet of VB code shows the call to four VEGA OD GUI

procedures to draw a Bus object, a Line object, a Transformer object and a

TransLine object, respectively. The first parameter, “addFlow,” in any of the four

calls represents an object of type AddFlow ActiveX (indicating where the OD

objects are going to be drawn). The second parameter is object-dependent, and

specifies which one of our four OD objects is going to be drawn.
DesignBus(addFlow, busData)

DesignLine(addFlow, lineData)

DesignTransformer(addFlow, transData)

DesignTransLine(addFlow, transLineData)

When applied to all the necessary elements of our problem, the result of

the aforementioned steps is the OD representation of the electrical network in

“Edit mode.” When interdiction results (produced by executing the optimization

module) are present, the user is allowed to switch to “Run mode” to visualize

them. A detailed description of the functionalities of each of these modes can be

found in Chapter IV. Next, we describe the design of these two modes within the

OD interface architecture.

2. Edit Mode
In Edit mode, the user interacts with the on-screen representation of ODs

through the OD itself and through two VB forms: frmBusInfo and frmLineInfo.

40

The OD allows moving all the displayed objects whose position

coordinates are updated automatically.

The frmBusInfo form appears when a Bus object is double-clicked and the

frmLineInfo shows up when either a Line or a Transformer object is double-

clicked. Both VB forms appear as pop-up windows providing information about

the specific object. In addition, these dialogue windows allow the user to modify

certain object data. If the user makes changes, there are three “Repaint

functions,” one for each object, responsible for updating the OD graphical

representation. Those functions also perform the redesign of the diagram

between Edit mode and Run mode switches.

Run ModeEdit Mode

DataStoreDataFlowSaveDesign()

ScenarioRepaintLine()

ScenarioRepaintBus()

ScenarioRepaintTransformer()

Scenario
Period

Scenario
Period

Scenario
PeriodRepaintLine() RepaintBus()RepaintTransformer()

frmLineinfo frmBusInfo

frmScenarioLineInfo

frmScenarioBusInfo

OD graphical representation

Memory Data Structure Memory Data Structure

DataFlow DataFlow

Figure 18. OD Interface Architecture. In Edit mode the user may view and change
data through two VB forms: frmLineInfo, frmBusInfo. Changing data, in turn, may
require a “refresh” of part of the OD. This is accomplished by means of three “Repaint
functions.” In Run mode, data and results can be consulted but not modified. Therefore,
the two VB forms (frmScenarioLineInfo and frmScenarioBusInfo) do not require any re-
painting action. On the other hand, there are three “ScenarioRepaint functions” used to
refresh the OD when the user selects a new scenario or period. In both Run and Edit
modes, the information is loaded from the memory data structure (not from the DB).

41

3. Run Mode
As opposed to Edit mode, the user cannot reshape or move the OD

objects in Run mode; objects are displayed as positioned in Edit mode. This is

done in order to maintain consistency between the existing criteria for editing

data and results: If we consider the OD object’s coordinates as part of the

“system data,” it is natural that we can “edit” the OD and save it in the same way

that we can open a diagram window (see Chapter IV), to change and save

problem data. Run mode is meant to display results, which of course, cannot be

modified. Although OD object repositioning does not affect any result, we prefer

requiring the user to make modifications in Edit mode only.

In Run mode, the user interacts with the on-screen OD by selecting a

particular scenario and time period whose results are going to be displayed. That

selection causes changes in the object properties such as label text, colors,

visibility, etc. The ScenarioRepaint functions refresh the OD diagram to account

for changes in the Scenario and Period selected by the user.

As in Edit mode, the user also interacts with the OD through two VB

forms: The frmScenarioBusInfo and frmScenarioLineInfo. The two forms provide

the user with information and results associated with the selected object.

However, unlike the Edit mode dialogue forms, they do not permit changes.

4. Database Update
The SaveDesign() procedure exports all the data that the user is permitted

to modify during Edit mode. It exports the data structure from memory to the

VEGA system DB.

F. AUTOMATED LAYOUT OF THE INITIAL NETWORK
1. General Considerations
The automated generation and layout of the initial OD helps the user

prepare an OD representation with modest effort. The ideas behind the

42

automated layout of the initial network are essentially the same as those existing

in the OD GUI in VEGA 1.0. After the automated layout is completed, the user

may modify it as described in Chapter IV Section E.

The function NewCoordinates() inside the DrawInitial VB module

generates the initial network. After the automated layout is completed and with

just a few manual changes, the user can plot a nicely fit diagram on the screen

that can be saved and retrieved at any time.

In what follows, we describe how buses, lines and transformers (i.e., the

objects representing them) are automatically plotted on the screen upon creation

of an OD.

2. Bus Objects
The first step in automated layout is the positioning of Bus objects. In

order to find appropriate bus locations, we consider the following parameters:

• Bus X-Y coordinates (provided by the user).

• Initial screen size of AddFlow object in screen coordinates (twips).

The size depends on screen resolution.

• Total number of Bus objects in the diagram (case-dependent).

• The desired Bus density (number of visible Buses on the screen at

100% zoom), modifiable by the user (default = 20 buses).

Using these values, the NewCoordinates procedure calculates the screen

limits of the diagram (in screen coordinates) and positions the Buses according

to the new screen coordinates. The initial orientation for all the Buses is

horizontal.

3. Load, Generator and Label Nodes within the Bus Object
The second step is Load and Generator positioning inside a Bus object.

We divide the area covered by the OD into four regions: Upper left, upper right,

43

bottom left and bottom right. Depending on the initial position of each bus

(calculated in the previous NewCoordinates() step), Load and Generator objects

are positioned as shown in Figure 19.

For example, if a bus is located in the upper right region of the OD, we

expect more lines (coming into and going out of the bus) directed towards the

bottom-left area from the current bus position. Thus, by default, we position the

Load object facing up on the right-hand side of the bus, as well as the bus label

on the right-hand side of the bus. If generators exist (we expect significantly

fewer buses to have generation than to have load), we represent them on the

right-hand side of the bus, facing down in order not to conflict with the load, if it

exists.

Figure 19. Generator, Load and Label Nodes Automated Positioning. The
positioning of the BusGen, BusLoad and BusLabel objects around the BusLine object
depends on the relative Bus X-Y coordinates in the OD. Since we expect to see lines
leaving from the bus in the direction of the OD center, we attempt to avoid overlapping
by positioning objects as in the four examples in the figure: in each example, Bus “4” is
located at a different corner of the OD diagram.

44

4 4

4444

44 44

44

As mentioned earlier, in order not to overload the display with extensive

details, all load at a bus is represented using a single Load object, even if it is

associated with different customer sectors, and all the generation connected to

the bus is aggregated too, even if it comes from several generating units.

4. Line Objects
The third step in automated layout is the design of all Line objects. To

enhance the graphical appearance of the multiple lines in the diagram, we

position each Line object based on the relative Left and Top positioning of the

two buses it connects. For example, in Figure 20, a Bus object instantiated as

Bus1 (identified by a BusLine Node and a BusLabel with text value “1” in the

Figure) is located to the right of Bus3. We establish this relative location by

comparing the .Left property of both buses. Because Bus1.Left > Bus3.Left, we

draw the Line L-1-2 beginning closer to the left-end of the BusLine1 Node, and

ending closer to the right-end of BusLine3 Node. For the same reason, Line L-1-

4 connecting Bus1 and Bus2 has the opposite behavior, as shown in Figure 20.

(Remark: BusLine Nodes are displayed horizontally in the automated layout, and

they cannot be rotated vertically by the user until this process is completed.)

Figure 20. Line Object Automated Positioning. In order to reduce Line overlap, every
Line is positioned depending on the relative location of the two Buses it connects. For
example, the first segment of the line connecting Bus “1” and Bus “2” is directed
downwards from Bus “1” because Bus “2” is below Bus “1.” In addition, the Line starts
on the right-hand side of Bus “1” and ends on the left-hand side of Bus “2” because Bus
“2” is located to the right from Bus “1.”

1

23

1

23

45

Similarly, depending on the vertical coordinates of two connected buses,

the first and the third segments of the Line object connecting them are positioned

accordingly: For example, in Figure 20, Bus1 is located above Bus3 (Bus1.Top <

Bus3.Top). Therefore, the first segment of the line (anchored to Bus1) is

directed downwards from the BusLine1 Node, whereas the third segment

(anchored to Bus3) is directed upwards from the BusLine3 Node. Initially, the

first and the last segments will always have the same length. The second

(middle) segment of the line has variable length depending on the two other

segments.

In case that the difference in vertical coordinates between the two Buses

is small, the Line will be designed as shown in Figure 21: In case (a) the bus’s

position is in the upper-half of the OD, so we direct the Line object inward (i.e.,

towards the center of the OD) because we believe it creates a nicer visual effect,

especially if the Buses are actually positioned at the very top part of the OD. In

case (b) the bus’s position is in the lower-half of the OD, and we direct the line

upward.

Figure 21. Special Cases of Line Object Automated Positioning. In case (a) the
bus’s position is in the upper-half of the OD, so we direct the Line object inward. In case
(b) the bus’s position is in the lower-half of the OD, so we direct the line upward.

500

1

700

2

L-1-4

1500

3

500

600

4

L-2-3

(a)

(b)

500

1

700

2

L-1-4

500

1

700

2

L-1-4

1500

3

500

600

4

L-2-3

1500

3

500

600

4

L-2-3

(a)

(b)

46

5. Transformer Objects
The last step is the automated Transformer positioning. Initially, a

transformer is always positioned halfway between the two buses it connects.

After positioning the main object (Transformer object), the TransLines are

created in such way that they always connect the middle of the BusLine and the

upper or lower Transformer edge. The decision as to which of the two

Transformer edges to pick depends on the relative position between the Bus and

the Transformer (Figure 22).

Figure 22. Transformer Object Automated Positioning. The location of the
Transformer is always the midpoint between the two Bus objects. With automated
positioning, Buses are always displayed horizontally, and Transformers are displayed
vertically. At a later stage, both can be rotated by the user.

The location of the Transformer is always the midpoint between the two

Bus objects. With automated positioning, Buses are always displayed

horizontally, and Transformers are displayed vertically. At a later stage, both can

be rotated by the user.

The TransLines are created during runtime and their associated data are

stored in a separate table called LineTrans which was not part of the original DB

109 110

111

A14 A16

109 110

111

A14 A16

47

in VEGA 1.0. The LineTrans table is the only new table incorporated into the

VEGA DB, and it is not used elsewhere in the VEGA GUI.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

IV. ONE-LINE DIAGRAM GUI

This chapter explains how the new OD GUI is organized, how it works and

its functionalities. It is intended for VEGA 2.0 users and, to a lesser extent, to VB

programmers interested in technical details of the most important programming

features that make the OD GUI possible. For the latter, paragraphs containing

VB implementation details can be recognized as those that begin with a standard

VB icon .

A. OVERVIEW
The user can enter the OD GUI through the main menu of the VEGA initial

screen or, alternatively, by clicking on the OD button in that screen (Figure 23).

Figure 23. Access to the OD GUI from the VEGA system.

We assume that, before opening the OD GUI, the following data have

been entered into the VEGA system (and are therefore available from the system

DB):

• Buses: System buses and associated data.

• Lines: System lines and associated data.

• Transformers: System transformers (if any) and associated data.

• Generators: System generators and associated data.

• Loads: System load per customer sector and associated data.

• Substations: System substations (if any) and associated data.

ODOD

50

This can be accomplished through the data menu in the VEGA GUI.

The above bulleted items become the basic components of the electric

network that we need to represent as an OD. In order to carry out this task, we

still require another piece of information: Bus X-Y coordinates. These can be

entered manually or imported from an external flat file in CSV (comma-separated

value) format. Both the manual and the import procedures can be accessed

either from the VEGA main menu or from the OD menu.

When both system data and bus coordinates are available, the “Empty

Mode” of the OD GUI allows the user to create a new OD diagram in automated

mode, or to import an existing OD for the case. The OD can be edited in “Edit

mode.” In addition, when “Results” are available (i.e., if the user has carried out

interdiction analysis for the case by using the optimization tools within VEGA),

the user is entitled to switch to “Run Mode” in the OD GUI and visualize the

results graphically. These three working modes, are described in detail later in

this chapter.

B. THE ONE-LINE DIAGRAM GUI SCREEN
1. Overview
MS-Windows screen settings are assumed to be set to at least 1024×768

pixels of resolution (1280×1024 or higher recommended), and a minimum of 256-

color quality. Under inferior quality conditions, some objects may appear blurry

or even disappear from the screen.

The OD GUI screen (Figure 24) is displayed in an independent VB window

divided into three areas: The toolbar area, the scenario display area and the

one-line diagram area. Each of these areas has a different content depending

on the selected functionality mode (“Empty”, “Edit” or “Run”) and depending on

the user selection within these modes (e.g., print preview, dialogue box display,

etc.)

51

Figure 24. OD GUI: Screen areas.

 The associated VB Forms that contain all the objects accessible from the OD

GUI are:

• Graphical_Design (main OD GUI manager)

• frmBusInfo (dialog box for bus data in Edit mode)

• frmScenarioBusInfo (dialog box for bus results in Run mode)

• frmLineInfo (dialog box for line and transformer data in Edit mode)

• frmScenarioLineInfo (dialog box for line and transformer results in

Run mode)

• Design_Buses_Coor (dialog box for bus X-Y coordinates, also

available from the Bus Data menu of the VEGA GUI)

Toolbar

Scenario Display

One-line Diagram

Toolbar

Scenario Display

One-line Diagram

52

2. Toolbar Area
The toolbar (Figure 25) is always docked horizontally at the upper-most

region of the OD window. It contains a total of 17 functional icon-buttons

grouped into seven blocks by the kind of task they accomplish. Groups are

separated by empty blocks, called “separators,” which allow partial toolbar

customization.

Figure 25. Toolbar Area. This contains a total of 17 functional icon-buttons grouped
into seven blocks by the kind of task they accomplish.

Some of the buttons in the toolbar are disabled depending on the working

mode and the current action that is being undertaken. For example, the “Save”

button cannot be used until an OD has been built or loaded.

As the user moves the mouse pointer over any of the enabled toolbar

buttons, a description of the functionality is displayed as “tool-tip text.” The

action is not carried out until the user clicks on the button and releases the

mouse button without leaving the button area.

The functionality of each button is described in detail later in this chapter.

3. Scenario Display Area
The Scenario Display Area (Figure 26) is located immediately below the

toolbar, above the one-line diagram area. In Edit mode, this area is empty

except for the display of X-Y coordinates of the mouse pointer on the bottom-left

corner. (See “Options” to switch between screen coordinates and original X-Y

coordinates.)

In Run Mode, the Scenario Display Area is filled with overall results for a

selected scenario and time period. The scenario is chosen by the user from a

drop-down list. The default scenario selection is “0,” which always exists

because it is created internally by VEGA. Once a scenario has been selected, a

53

subset of “periods of restoration” associated with the scenario is shown in a list,

from which the user must select a specific period. Recall that these periods after

interdiction refer to each stage that the power system undergoes from the attack

until all system components are repaired. Typically, we expect lines to be

repaired quickly, whereas high voltage transformers and generating units take

much longer. The outage duration data are provided by the user for each

specific component of the system.” Periods are listed using an index followed by

a period time-window of the form “Initial hour – Final hour,” which is scenario-

dependent. The default selection is the first period on the list. In Figure 26, the

selected scenario (“16”) has four periods, from which the user has selected

period “2” covering a time-window between 72 and 360 hours after the attack.

Figure 26. Scenario Display Area in Run Mode. This consists of two list boxes and a
data table. The Scenario list is static, containing Scenario “0” (default scenario created
by the system) and all the other Scenarios under analysis (created by the user). The
Period table is dynamic, and is refreshed when the user selects a different Scenario.
The data table is also dynamic, and is refreshed when the user selects a new Scenario
and/or Period.

Once the scenario and period have been selected, the text boxes on the

right-hand side of the display area show information about the system status for

that period of time: Instantaneous power met and shed, and total cost. These

data are also displayed in terms of energy met and shed and energy cost for the

whole period. Cumulative energy shedding and cumulative cost from hour “0” to

the last hour of the selected period are also displayed.

Selecting a scenario and/or period causes the OD to be “refreshed”

according to the results for that particular selection. This causes a nice visual

effect, as the user can compare how the electric grid evolves over the periods of

54

restoration (for a particular scenario) by simply moving down on the period list.

Also, he or she may compare different ODs representing the first period (which

contains the system status immediately-after the attack) for a sequence of

scenarios, by simply moving down on the scenario list. (Recall that, by default,

period “1” is selected automatically when the user chooses an scenario.)

Mouse coordinates are displayed at the bottom of the Scenario Display

Area as the mouse moves over the OD display. Coordinate units are set in the

Options menu from the Toolbar.

 The associated code for pinpointing X-Y coordinates is controlled

under the MouseMove event of the AddFlow object. This means that whenever

the mouse is moving over the diagram, the MouseMove event will continually

update the value of the Coordinates label (lblMouse) where the coordinates are

displayed. Here is an excerpt of the code under the MouseMove event:
log_X = (x * 100 / AddFlow1.xZoom) + AddFlow1.xScroll

log_Y = (y * 100 / AddFlow1.yZoom) + AddFlow1.yScroll

lblMouse = "x=" & log_X & ", y=" & log_Y

Notice that, in order to provide accurate coordinates, the formula to

calculate the coordinates (in OD screen units, or twips) considers the diagram

zooming factor and any previously scrolling of the viewable window.

4. One-Line Diagram Area
The OD area (Figure 27) is located below the Scenario Display area, and

includes horizontal and vertical scroll bars. It is used to display and edit the OD

for the electric system under study, and to preview it before printing.

In Edit mode, the OD is editable in many ways (moving objects, reshaping

lines, etc.), and represents system data. In Run mode, the graphic area is not

editable. On the other hand, since interdiction, generation, power flows and

other results change by scenario and period, the OD display adapts dynamically

to accommodate these results. This adaptation produces an insightful view of the

55

electrical system’s robustness or lack thereof, as a function interdiction resource,

as well how the system’s functionality is restored over time, after interdiction.

Figure 27. One-Line Diagram Area. The OD area is located below the Scenario
Display area, and includes horizontal and vertical scroll bars. It is used to display the
actual OD for the electric system under study. This particular OD is only partial because
the user has zoomed in to focus on a particular section of the network.

 Programmatically, the OD area is implemented as an AddFlow object

that contains many instances of all the objects described in Chapter III.

C. THE TOOLBAR
1. Buttons

In this section we describe the functionality of all the toolbar buttons.

Certain buttons are not available in some of the working modes.

56

 In the following toolbar description, the name next to each icon is also

the “Tag” property that the OD GUI uses internally to refer to these buttons.

 Open:

 Availability: Empty and Edit modes.

 Description: Opens an existing one-line diagram for the case.

 Note: In Edit mode, opening an OD brings up the last saved OD in

the DB for this case, overwriting the existing OD.

 During Empty mode, the button is enabled only if an OD exists in

the DB for the case.

 Coordinates:

 Availability: Empty and Edit modes.

 Description: Allows the user to enter or import bus coordinates,

and select which buses are to be displayed or hidden.

Changes will not be reflected until a new OD is laid out in

automated mode using the “Build” button.

 Build:

 Availability: Empty and Edit modes.

 Description: Automatically lays out a new (tentative) OD from

scratch. The building process determines screen coordinates for all objects in

the OD, as described in Chapter III Section F.

57

 Edit:

 Availability: Run mode.

 Description: Edits the OD for the case, and allows selected data

and the OD display layout to be modified. Edit mode does not display any

problem results.

 Run:

 Availability: Edit mode.

Description: Displays the OD for the case and incorporates power

flows, interdicted components and other system data and results.

The availability of Run is contingent upon the existence of results,

which are provided by VEGA’s optimization module.

 Options:

 Availability: Edit and Run modes.

 Description: Opens an option window (see Figure 28) from which

the user can set a number of default options that affects the OD display.

Options may apply to Edit mode, Run mode or both.

 Remark: At the conclusion of this thesis project, only the “Use line

width” option (among the options listed below) is fully implemented. All the

other options have been set to default values; it is assumed they will be made

functional in updated versions of the OD GUI.

The available options are:

• Bus size: Sets the bus object size (in twips). (Default=1800)

• Number of buses: Sets the maximum number of buses per full screen

at 100% zoom level, after using the automated layout procedure. This

58

option allows controlling the density of buses in the OD layout.

(Default=20 buses.)

• Zoom step: Sets the zoom in/out factor in the range [1.01, 2.00]. A

larger value causes a deeper effect every time the user zooms in or

out on the OD. (Default=1.25)

• Line code/flow: Sets whether line code labels (in Edit mode) and line

power-flow values (in Run mode) are displayed. (Default=Yes)

• Transformer code/flow: Sets whether transformer code labels (in Edit

mode) and transformer power-flow values (in Run mode) are

displayed. (Default=Yes)

Figure 28. Options Window. Allows the user to change the default settings for
displaying ODs. For example, if we “uncheck” the “line code/flow” option, neither Line
codes nor Line flow values will be displayed in Edit and Run mode, respectively.

• Use line width: Only in Edit mode, sets whether lines with higher

capacity are depicted using thicker lines or not (i.e., same width for all

lines). (See Line capacity/flow representation option below.)

(Default=Yes)

59

• Use line jumpers: Sets whether crossing lines will be displayed using

a jumper instead or a straight cross over. (Default=No)

• Coordinate units: Sets the coordinate system for the mouse

coordinates as it moves over the OD display. If set to “Original,” it

uses coordinates based on the original coordinates entered by the

user. If set to “Screen,” it uses internal OD screen coordinates (twips).

(Default=Screen)

• Line capacity/flow representation: In Edit mode, selecting “Use line

width” will display lines using heavier line width for larger capacities.

The user can establish the “setpoints” (levels in MW) to accomplish

this. In Figure 28 for example, lines between 0 and 150 MW will be

displayed lighter than lines between 150 and 300 MW. In Run mode,

the same values are used to represent actual power flows.

• Relative line flow representation: This option is used only in Run

mode. It sets relative setpoints (% of line capacity) for the arrow size

used to represent power flow direction. Three arrow sizes exist: Small

for power flows under the first level mark, medium for power flows

between the first and second marks, and large for power flows over the

second level mark. For example, in Figure 28, lines carrying power

flows over 90% of the maximum line capacity will be displayed using a

larger arrow than lines carrying power flows between 50% and 90% of

that capacity.

 Rotate:

 Availability: Edit mode.

 Description: Allows the user rotate a selected bus or transformer

from horizontal to vertical display or vice-versa. The selected Bus or

Transformer object in the OD is the one that has been clicked prior to the

60

rotate button. Lines, generators, loads and labels associated with the rotated

object are rotated and/or relocated accordingly.

 The code associated with this feature can be found in the

DrawDesign module and consists of two functions, RotateBus and

RotateTransformer.

 Zoom-In:

 Availability: Edit and Run modes.

 Description: Zooms in the current OD. This makes the display of

the OD larger. It closes on the upper left corner of the current screen. The

zoom factor is set in the options.

 The code associated with Zoom In makes use of the built-in

properties of AddFlow, namely xZoom and yZoom. By increasing or decreasing

those two values, the size of all the objects inside the AddFlow object changes

accordingly. For example, the code:
AddFlow1.xZoom = AddFlow1.xZoom * 1.25

AddFlow1.yZoom = AddFlow1.yZoom * 1.25

will cause a 25% enlargement in the current display. An overall upper limit of

500% has been set to prevent potential overflow errors.

 Zoom-Out:

 Availability: Edit and Run modes.

 Description: Zooms out the current OD. This makes the display of

OD smaller. It moves away from the upper left corner of the current screen.

The zoom factor is set in the options.

61

 This feature is coded like the above Zoom-In feature. The code:
AddFlow1.xZoom = AddFlow1.xZoom / 1.25

AddFlow1.yZoom = AddFlow1.yZoom / 1.25

will cause a 25% decrease in the display area. An overall lower limit of 20% has

been set to prevent potential overflow errors

 Isofit:

 Availability: Edit and Run modes.

 Description: Adjusts the zoom automatically in order to make the

entire OD fit in the screen (Figure 29). For very large and/or unevenly

distributed networks the size of objects displayed in the OD will be too small

for practical analysis.

Figure 29. An OD Before (left) and After (right) Using Isofit.

 The OD is resized so it can be viewed inside the viewable part of the

AddFlow window. The code associated with this feature calculates the xZoom

and yZoom properties so that the diagram fits in the AddFlow window.

 Graph1:

62

 Availability: Run mode.

 Description: Displays a graphic with a summary of interdiction

results by scenario. This graphic is the same as the one available from the

Result Menu in the VEGA GUI.

 Graph2:

 Availability: Run mode.

 Description: Displays a graphic with a summary of interdiction

results by scenario and period. This graphic is the same as the one available

from the Result Menu in the VEGA GUI.

 Save:

 Availability: Edit mode.

 Description: Saves changes made to the OD display and data.

 Any changes the user makes to the One-Line Diagram while in Edit

mode are stored temporarily to the memory data structure described in Chapter

III. The code associated with the Save button transfers all the data that exist in

the memory data structure to the appropriate fields in the database, overwriting

any existing values.

 Copy:

 Availability: Edit and Run modes.

 Description: Exports the current OD to the Clipboard as an

enhanced metafile picture.

63

Remark: The Clipboard object is shared by all Windows applications.

Therefore, its contents are subject to change whenever any form of “Copy” is

used in VEGA or in any other MS-Windows application.

 The code associated with this button uses the ExportPicture method

of AddFlow object and SetData method of VB Clipboard object. The Clipboard

object can be used to enable a user to copy, cut, and paste text or graphics in an

application. Before copying any material to the Clipboard object, its contents

should be cleared by executing the Clear method.

 Clipboard.Clear

 Clipboard.SetData AddFlow1.ExportPicture(afAllItems, False, True)

 Preview:

 Availability: Edit and Run modes.

 Description: Previews the OD as it will be printed. Initially, the OD

zoom level is maintained. A left-click on the Preview display provokes a

zoom in, and a right-click provokes a zoom out. The OD may cover more

than one page, but only one page can be previewed at a time. The

combination Shift + double-right-click advances one page, whereas Shift +

double-left-click goes back one page. The aforementioned combinations are

established by the AddFlow ActiveX control.

 If already in Preview, the user can return to the OD display (in Edit

or Run mode) by clicking again on the Preview button or in the Exit button.

 Print:

 Availability: Edit and Run modes.

64

 Description: Prints the current OD to the MS-Windows default

printer. Only the default printer can be used. To ensure the desired printout,

the user should Preview the OD first (see above).

 Both Preview and Print use an extension of AddFlow called PrnFlow.

This is also an ActiveX control that allows printing AddFlow diagrams. Some of

the PrnFlow functions are: Multi-page printing, print previewing, margins, header

and footer manipulation . Currently, the OD GUI does not take full advantage of

all of these features. The functions implemented at this point are PrintPreview

and Mutil-page printing.

 Exit:

 Availability: Empty, Edit and Run modes.

 Description: Exits the OD GUI, except when Preview is displayed,

in which case it returns to Edit or Run mode.

2. Customization

The toolbar can be customized by clicking on any of the empty areas

between buttons. Customization is handled directly by standard MS-Windows

procedures: Adding buttons, removing buttons, moving buttons up and down,

and resetting the toolbar (Figure 30).

Figure 30. Toolbar Customization Window. Buttons can be removed, added or
arranged differently by moving them up and down.

65

D. EMPTY MODE
1. Introduction
The Empty mode occurs when the OD display area is empty.

The toolbar buttons that are enabled in Empty mode are Open,

Coordinates, Build and Exit (Figure 31).

Figure 31. Toolbar in Empty mode. The only buttons that are enabled are Open,
Coordinates, Build and Exit.

Paragraphs 2 through 4 below describe the circumstances that can lead to

Empty mode in the OD GUI.

2. First Time the OD GUI is Used
The first time a user enters the OD GUI for a new case study, the system

will be waiting for the user to click on the “Build” button in the Toolbar to layout an

OD automatically. This button will be enabled if the user has provided X-Y

coordinates for at least one system bus.

 The Build button uses the original bus coordinates to automatically

create bus, line and transformer screen locations, and to save them into the

VEGA DB (see Section III.F). Next, it brings all of the electric system data and

available results from the DB into the system memory. Then, network objects

are positioned on the screen into the AddFlow object (see Section III.E). The

code that controls this process is located in the Private Subroutine

Build_oneline() of the VB form Graphical_Design.

3. Bus Visibility and X-Y Coordinates
By default, upon creation of a bus entity in the VEGA system DB, the bus

is assigned X-Y coordinates equal to (0,0). For this reason, buses are set to

“invisible.” It is the user’s responsibility to provide actual coordinates or set the

66

“visible” property to “true” for at least one bus in order to represent an OD. At that

point, the “Build” button will be enabled in order to create a new automated OD.

Coordinates can be entered into the system in a manual or automated

procedure through the Bus Coordinate window originally available from the Bus

Data form in the main menu of the VEGA system. We have made this form

available from the OD GUI (by clicking on the “Coordinates” button) for practical

reasons: A user might want to enter all the information pertaining to the bus at

once, or perhaps he or she prefers to use the VEGA system without ODs, leaving

that part for later. Thus, it seems natural to be able to enter and/or have access

to the coordinate manager from both the Bus Data window and the OD GUI.

Figure 32 shows the Bus Coordinates window, where the user may edit

the coordinates for each bus, or import all (or part) of them at a time from a

standard file in CSV format.

Figure 32. Bus X-Y Coordinates Window. The user may enter coordinates for some
Buses, and/or import them from a CSV file. In addition, the user selects which buses
should be visible in the OD. Using the default button causes all buses with (0,0)
coordinates to be invisible, and all buses with non-(0,0) coordinates to be visible.

Although it is possible to set which buses are visible or hidden manually

(i.e., on a one-by-one basis), the “Default” button at the bottom of this window

67

greatly simplifies this task: It makes all buses with non-(0,0) coordinates visible,

and all buses with (0,0) coordinates invisible. Since (0,0) are the initial

coordinates of all buses, the user only has to worry about entering coordinates

for the buses he or she desires to make visible. (Perhaps a manual change is

needed to make visible a specific bus which is actually located at (0,0), but all the

others will be updated automatically.) Hiding buses is especially useful for large

cases, for which a proper visualization of the OD would be impossible if all buses

were displayed.

Remark: Even if some buses are invisible, their data remains in the

system and we can access them through bus-line navigation, as explained later.

 The OD GUI directly invokes the coordinate manager form,

Design_Buses_Coordinates, which handles the optional call to the automated

coordinate import form, Design_Buses_Import_Coordinates.

4. An OD Already Exists for the Case
If the user enters the OD GUI while a previous OD exists for the case

(stored in its DB), the “Open” button will be enabled on the toolbar, and the user

may simply click on it in order to open the existing OD. Alternatively, the user

may prefer to add or modify bus coordinates and then build a new OD instead of

displaying the existing one. Future versions of the OD GUI may use the “Open”

button to display different saved ODs for the same case (e.g., showing a different

number of buses).

 The “Open” button transfers all bus, line and transformer coordinates

(which might differ from the original coordinates if the user has made and saved

modifications to the initial OD), along with all other associated data and available

results, from the DB into the system memory. Then, all network objects are

positioned on the screen inside the AddFlow object (see Section III.E). The code

that controls this process is located in the Private Subroutine Open_oneline() of

the VB form Graphical_Design.

68

E. EDIT MODE
1. Introduction
The Edit mode allows the user to view and modify OD displays, along with

selected data for the case under study. It may be viewed as the default mode in

the OD GUI.

The system enters this mode automatically when a new OD is built or an

existing OD is opened. When results are present, the user may switch from Edit

mode to Run mode by clicking on the Run mode button. The user may then

return to Edit mode using the Edit button.

2. Toolbar Buttons
The following toolbar buttons are available in Edit mode: Open,

Coordinates, Build, Run, Options, Rotate, Zoom-In, Zoom-Out, Isofit, Save,

Copy, Preview, Print, Exit (Figure 33).

The Power Flow (Run) button is only enabled when results exist in the

system DB.

Figure 33. Toolbar in Edit Mode. The only buttons that are not enabled are Edit,
Graph1 and Graph2. The Run mode is available only if there are results for the case.

3. Working with the OD

a. OD Components
In Edit mode, the displayed OD consists of system buses,

generators, loads, transformers and lines, which we call generically “objects.” An

OD can be displayed as long as at least one system bus is visible.

Examples of bus, generator and load objects are shown in Figure

34. Buses are represented using a straight blue line with a label that indicates

the bus code in the system. Each generator object and each load object are

69

associated with a unique bus object. Generators are displayed as circles

attached to a bus. Each generator object contains a label which, in Edit mode,

displays total generating capacity available at the bus. Similarly, every load is

drawn as a large triangle connected to the bus. In Edit mode, the inside area of

the triangle shows total load at the bus. Generators and loads are physically

“anchored” to the bus.

Figure 34. Bus Representation: A bus (and its label) with associated generation and
load. Buses in the OD GUI are represented by a straight blue line and a label showing
the (unique) bus code. If one or more generators are connected to the bus, they are
represented in an aggregated mode by a circle attached to the bus line. Similarly, if one
or more loads exist at the bus, they are displayed using a single arrow. The values
inside the generator and the load display total generating capacity and total load at the
bus, respectively.

System lines (Figure 35, left) are displayed as black, piecewise-

straight lines connecting two buses. Our ODs use three segments to represent

each line: The first and the last segments are always directed perpendicularly to

the bus being connected, whereas the middle segments one connects the other

two segments as necessary. Lines connecting buses and transformers are

represented similarly (Figure 35, right). Each connection uses a three-segment

line. Transformers are displayed in green.

155

100

116

155

100

116

70

Figure 35. Line Representation. One line connecting two buses (left) and two lines
connecting two buses to a transformer (right).

In Edit mode, the OD has many features that help shape the final

diagram for better visualization. Other features allow view information that may

be important at a particular point, but is not desired to be seen at all times. Some

of the allowed features of OD in Edit mode are:

• Moving buses, generators, loads and transformers.

• Moving and reshaping lines.

• Rotating buses and transformers.

• Using options, tips and dialogue windows to customize the

information to be displayed.

b. Movement
Object movement is accomplished by standard MS-Windows drag-

and-drop actions using the mouse.

Buses and transformers can be repositioned anywhere inside the

OD display area. A modification to the location of a bus or a transformer is

followed by an automatic movement of lines, and any generator and load objects

connected to the bus (Figure 36). To drag a bus, the mouse click must occur

700

2

500

600

4

L-3-4

700

2

500

600

4

L-3-4

215

317

115

155

100

116

A24

215

317

115

155

100

116

A24

71

anywhere in the bus area except where another object (generator, load, line or

label) exists.

Figure 36. Bus Movement. The example shows how the user can reposition bus
“116,” along with all of its associated components (generator, load, label and lines). This
is accomplished by the standard MS-Windows operation of “drag and drop.” The click
before start to dragging the bus should occur inside the bus area (imaginary box around
the bus, see left panel) but not on any of the other objects inside the bus.

A generator and/or load connected to a bus can also be

repositioned anywhere inside the area covered by the bus (Figure 37). To move

a generator or load, use the mouse to left click inside the circle or triangle areas,

respectively, and (while keeping the left mouse button pressed), move the

generator or load to the desired position.

Figure 37. Load and Generator Movement. The user can drag and drop a load or
generator anywhere within the bus area, as shown in the figure.

72

Line repositioning is available only by using the LinkPoints of each

of the line segments. These LinkPoints are movable. The LinkPoints on the

buses can be moved along the bus line; the LinkPoints not attached to the buses

(on the middle segment) can be moved towards or opposite to the bus line. This

is shown in Figure 38.

Figure 38. Line Movement. The line (left) is going to be reshaped in two steps: In
the first step, LinkPoint1 (attached to the bus) is shifted left along the bus line. In the
second step, LinkPoint2 is moved upwards. (The order for these steps is
interchangeable.) The result is the solid line in the figure on the right, where the dotted
line represents the line location before changes, and is shown for reference only.

 The programmatic details of object movement are described in detail

in Section D of Chapter III.

Buses and transformers can be rotated from vertical to horizontal,

and vice versa, in the OD (Figure 39). This is accomplished by selecting the

object to be rotated with the mouse, and then using the Rotate button. Lines

follow accordingly, although some manual tuning may be needed.

Figure 39. Bus Rotation. A bus prior to (left) and after (right) rotation. A repeated
rotation command returns the bus to its original position.

113

591

265

591

265

113

113

591

265

113

591

265

591

265

113

591

265

113

LinkPoint1

LinkPoint2

73

c. Information Displayed
The information provided by the OD is separated into three levels:

Permanent, tip, and advanced.

The “Permanent” level refers to the information that is displayed at

all the times by just looking at the diagram (Figure 40):

• Colors and shapes are used to identify the object type.

• Labels inside or around the object show the following

information. For buses: Bus code and substation where the bus is

located (if any). For generators: Total generating capacity at the

bus. For loads: Total load at the bus. For lines and transformers:

Code (optional).

• Line width (optional): Depicts higher-capacity lines using

thicker lines. Default values for the capacity levels are: Level 1 =

[0,150) MW; Level 2 = [150,300) MW; Level 3 = [300,500) MW;

Level 4 = [500,∞) MW. The capacity level values are user-defined

through Options. The number of capacity levels (four) is non-

modifiable.

 Line width is established through the DrawWidth property of the

AddFlow Link object. The values used for the different levels are Link.DrawWidth

= 0, 1, 2 and 3 for capacity levels 1, 2, 3 and 4, respectively.

74

Figure 40. Permanent Level of Information in Edit Mode. The OD GUI provides
object type identification using different object shapes and colors. Labels provide object
codes and representative values.

The second level of information is provided by automatic “tips.” In

addition to the information available from the “permanent” level, text tips for

objects are available when the user passes the mouse pointer over an object

(Figure 41).

In Edit mode, the information displayed by these tips is:

• Buses: Code and full name.

• Lines and transformers: Code and capacity.

75

Figure 41. Tip Level of Information. When the user passes the mouse pointer over
an object, additional information on the object is displayed.

The last and most detailed level of information is the advanced

level. This information is displayed when the user double-clicks on a bus, line or

transformer of the OD. This causes a dialogue associated to the object to open,

from which the user can view and modify selected data, and even navigate to

dialogue windows pertaining to other objects. This advanced functionality is

described in detail in the next two paragraphs.

 As mentioned in Chapter III, the OD window is an AddFlow object.

This means that any click in the OD area is an AddFlow-controlled event.

Specifically, the events controlled whenever the user moves the mouse pointer

over the AddFlow are:

• MouseUp and MouseDown: Triggered when the user presses

(MouseDown) or releases (MouseUp) a mouse button over the AddFlow object.

• MouseMove: Triggered when the user moves the mouse over the

AddFlow object.

• DblClick: Triggered when the user presses and releases a

mouse button (left or right) and then presses and releases it again over the

AddFlow object.

Note that, initially, we do not differentiate events by which button of the

76

mouse is used (right, left or mouse-wheel). This is controlled by VB attributes

associated with the mouse event: Button, Shift and vbRightButton. An example

of the series of AddFlow events that leads to a drag and drop action for an object

is:

• MouseDown: Object selection and type recognition.

• MouseMove: Object control depending on the object type.

Movement restrictions are applied.

• MouseUp: End of object movement. The new position is saved

in the memory data structure.

4. Bus Dialogue
The Bus Dialogue Window (Figure 42) provides specific information about

the selected bus and associated loads, generators, lines and transformers. It is

divided into the following sections: Title, Interdiction, Generators, Load Sectors,

and Lines/Transformers.

The Title section displays the bus code and name.

The Interdiction section displays and allows user modification of

interdiction data for the bus.

The Generator section, displayed in tabular form, provides the information

about all generating units at the bus. The user may modify all the displayed

fields except the Generator’s code. Every time the user changes the “maximum

generating capacity” for any generator, the total “maximum generating capacity”

for the bus is updated. This, in turn, may affect the graphical representation of

the Generator object in the OD. For example, in the extreme case that the user

reduces the generating capacity to zero for all the generators at the bus, the

generator object will disappear from the OD. If later the user increases again the

generating capacity, the generator object will reappear at the same place.

The Load (by Sector) Section behaves similarly. Here, the different sector

loads at a bus are displayed and their attributes can be modified.

77

The Lines/Transformers Section provides tabular information on both

incoming and outgoing lines for the selected Bus. Line codes are shown in

black, whereas transformer codes are shown in green. Unlike the two other

tables, this table’s fields are not editable.

The user can navigate to the dialogue window of any of the listed lines or

transformers directly. To do this, it suffices to double-click on its code. From

there, it is possible to open a dialogue window for any of the two buses

connected to the line or transformer (see the following paragraph).

Figure 42. Bus Dialogue Window in Edit Mode. The bus name and code appear in
the title section. The window shows data for: interdiction parameters for the bus,
generating units connected to the bus, loads at the bus, and lines and transformers
connected to the bus. These can be used to open the associated line or transformer
dialogue window directly, by simply double-clicking on it. The user can modify all values,
except codes. For example, the bus can be made non-interdictable with a simple click.

 All the information shown in the Bus dialogue window is transferred

from the memory data structure. Any changes by the user to the modifiable data,

do not store back to the memory data structure until the user clicks on the OK

button. Clicking the OK button updates the memory data structure, along with

refreshing the OD. Clicking the Cancel button cancels.

Generator and Sector information is displayed in VB DataGrid objects.

Title
section

Interdiction
section

Generator
section

Load
section

Lines/Transformers
section

78

Line/Transformer information uses the VB ListView object. This object

supports the DblClick event. When the user double-clicks on any listed line or

transformer, the underlying code for the List View object unloads the Bus

Dialogue window (saving in memory any changes first, as if the OK button had

been pressed) and then loads the Line/Transformer dialogue window.

5. Line/Transformer Dialogue
The Line/Transformer Dialogue Window (Figure 43) provides specific

information about the selected line or transformer, along with its associated

buses. It is divided into the following areas: Title, Interdiction, Capacity and

Buses.

Figure 43. Line/Transformer Dialogue Window. The line or transformer code
appears in the title section. The window shows data for: interdiction parameters for the
line or transformers, capacity, and buses connected to the line or transformer. These
can be used to open the associated bus dialogue window directly, by simply double-
clicking on it. The user can modify all values, except codes and bus data.

The Title section displays the entity’s code, in black for a line or in green

for a transformer.

Interdiction
section

Title
section

Bus
section

Capacity
section

79

The Interdiction section displays interdiction data for the Line or

Transformer, allowing the user to modify it, such as:

• If the Line or Transformer is interdictable or not.

• The duration of the interdiction in hours along with the resource

necessary to interdict this Line or Transformer.

The Capacity section shows the line or transformer capacity in MW, and

allows the user to modify this value.

The Bus section shows the two buses associated with the line or

transformer, connected by a black or green line, respectively. The information

displayed for the buses is not modifiable.

The user can navigate to the dialogue window of either of the two buses

by double-clicking on the code-name area for the desired bus.

 The information storage for Line/Transformer is handled as it is in

the Bus dialogue window.

The two boxes at each side of the line are VB Label objects and

support the DblClick event. When the user double-clicks on any listed line or

transformer, the underlying code for the List View object unloads the

Line/Transformer dialogue window (saving in memory any changes first, as if

the OK button had been pressed) and then loads the Bus dialogue window.

F. RUN MODE
1. Introduction
When results exist, the user can analyze them graphically in Run mode. In

particular, he or she can:

- Compare attack plans for different scenarios, by simply moving along the

elements in the scenario list.

- Analyze system restoration dynamics for a particular scenario, by simply

moving along the elements in the period list.

80

- Analyze the whole system in detail at a given scenario and period, using

on-screen graphical information and dialogue windows.

These visual features, in turn, help provide insight into the network’s

behavior (e.g., robustness, or lack thereof, key components, etc.) and potential

level of disruption caused by terrorist attacks. All of this constitutes the ultimate

goal of the VEGA OD GUI.

The user may alternate modes of OD GUI between Run and Edit mode by

clicking the Run or Edit button respectively. The user may also unload the OD

GUI and go back to the VEGA main screen by clicking the Exit button.

In Run mode, a collection of ODs actually exists: For each interdiction-

resource scenario, there is an optimal interdiction plan. Each of these plans

entail restoration over time, as interdicted components are repaired or replaced

over time and load shedding diminishes. This, in turn, causes different system

“states” [Salmeron et al. 2003-II], each one characterized by a subset of outaged

components and particular system values (power flows, generating unit outputs,

bus voltages, etc.), that we represent with different ODs.

Using the OD GUI in Run mode we can view graphically and numerically:

• The consequences of optimal attacks on the network by

interdiction-resource scenario, and

• The power flow through the network during the various periods of

restoration following an attack.

2. Toolbar Buttons
The following toolbar buttons are available in Run mode: Edit, Options,

Zoom-In, Zoom Out, Isofit, Graph1, Graph2, Copy, Preview , Print and Exit.

Figure 44. Toolbar Buttons in Run Mode. In this mode, the Open, Coordinates,
Build, Run and Rotate buttons are not enabled.

81

3. Working with the OD
a. OD Components
The OD GUI makes use of the scenario display area (already

described in Section B, see Figure 26) to determine which OD from the OD

collection is going to be displayed. In what follows, we assume that a specific

Scenario and Period have been selected from the appropriate lists.

Part of the information we use in Run mode is how system

components are affected by the interdiction plan. For each component, this

information is divided into “interdiction behavior” and “status,” as described

below:

 The possible (scenario-dependent) interdiction behaviors for each

component are:

- Interdicted: The component has been interdicted (e.g., a line

has been attacked and destroyed).

- Indirectly Interdicted: The component has not been interdicted

but it is connected to a component that has been interdicted,

rendering the component inoperative (e.g., a bus is interdicted,

which in turn disconnects any generators at the bus, and

thereby effectively renders any such generators inoperative).

- Not interdicted: None of the above.

The possible (scenario- and period-dependent) status for each

component is:

- In Service: The component can be used (for example, it was

not interdicted or, if it was, it has already been repaired).

- Not In Service: The component is inoperative (i.e., either the

component or an associated component was interdicted and still

needs to be restored).

82

The OD objects in Run mode are the same as we have described

in Edit mode: Buses, generators, loads, lines and transformers. However, there

are several changes in the representation of the OD in Run mode, compared to

Edit mode. Many of the changes depend on how a component “behaves” after

interdiction and its “status.” This is described next using references to Figure 45:

• Buses: A bus is colored blue if it is “In Service” (e.g., bus “213”).

Otherwise, it is colored red if is Interdicted (e.g., bus “216”), or gray

if it is Indirectly Interdicted (e.g., bus “211”). Indirectly Interdicted

can occur if the bus is located at a substation and that substation is

interdicted. In this case, the bus line color remains gray but the

bus label (which contains the substation code too) is displayed in

red (e.g., buses “209,” “210,” “211” and “212”). Remark: If a bus is

cut off from the rest of the network by the interdiction of a set of

surrounding buses, the bus is not considered indirectly interdicted.

• Generators: A generator (which may represent a collection of

generators) is colored black if it is In Service (e.g., the generator

associated with bus “213,” even if its current output is 0 MW).

Otherwise, its outline color is red (e.g., the generator associated

with bus “216”).

• Loads: A load is colored black if its demand is met (e.g., the load

associated with bus “213”). Otherwise, if its bus has been

Interdicted or Indirectly Interdicted (e.g., bus “216”), the load

outline color is red. It may occur that the associated bus is In

Service but we need to shed some or all of its load (because of

insufficiencient, operational generating and/or transmission

capacity in the system). In this case, the load outline color will still

black, but the fill color for the triangle will become closer to red as

the amount of load shed increases (becoming completely red if

100% of the load is shed; for instance, consider the load

associated with bus “214”).

83

• Lines and Transformers: A Line or a Transformer is colored black

or green respectively, if it is In Service. Otherwise, its outline color

is red if it is Interdicted, or gray it is Indirectly Interdicted.

Figure 45. First Level of Information in Run Mode. The OD GUI (for a specific
Scenario and Period) shows insightful visual information about the system behavior. For
example, the red-colored buses and the red-colored transformer have been interdicted.
The gray-colored buses, lines and transformers have been indirectly interdicted.
Substation “Sub_22” is also interdicted; this is indicated by the red in the labels
associated with the bus, which show the combined bus-substation code. The rest of the
components are in service. Width and arrow size for lines depends on the power carried
by the line, and on the fraction of the line’s capacity being used, respectively. Load at
bus “108” has been partially shed, whereas at bus “215,” no load at all can be met. On
the other hand, all the demand is served at bus “206.” How the system evolves during
for the next restoration period is just one click away on the Period list (see Figures 26,
46).

In Run mode, the OD is not editable: The only change that may

occur is when the user selects a different Scenario or Period to represent, and

the OD changes accordingly.

84

Options, tips and dialogue windows are available to the user as

described in the following paragraphs.

b. Information Displayed
As in Edit mode, we have information levels of “Permanent,” “Tip”

and “Advanced” that can be displayed with our OD.

Figure 46. Scenario Display Area. In this example the user has selected the second
restoration Period of Scenario “16.” The text boxes show information about the system
status for that period of time, such as: Instantaneous power met and shed, total power
cost, energy met and shed, and energy cost for the whole period. Cumulative values for
energy shed and its cost (from hour “0” to the last hour of the selected period) are also
displayed.

The characteristics of the Permanent level are:

• The Scenario Display area (Figure 46) shows the Scenario and

Period which the current OD represents. The text boxes on the

right-hand side of the display area show information about the

system status for that period of time: Instantaneous power met

and shed, and total cost. These data are also displayed in terms

of energy met and shed and energy cost for the whole period.

Cumulative energy shedding and cumulative cost from hour “0” to

the last hour of the selected period are also displayed. The user

can select a new Scenario and/or Period at any time.

• OD colors and shapes are used to identify the object type, and

how the interdiction plan has affected the network’s functionality.

• Labels inside or around an object display the following data. For

buses: Bus code and substation where the bus is located (if any).

85

For generators: Generating output at the bus. For loads: Load

met at the bus. For lines and transformers: Power flows

(optional).

• Line width: The OD uses thicker line widths to depict lines

carrying more power. The default value for the power flow levels

is the same as for the capacity levels in Edit mode (see Section

E), and it can be modified by the user.

• Line arrow: Arrows show the direction of power flows (no arrow is

shown if power flow is zero), and arrow sizes increase as the

percentage of utilized line capacity increases. Default value for

the utilized line capacity levels (or “ranges”) are: Level 1: [0,50%),

Level 2: [50%, 90%), Level 3:[90%, infinity). (Remark: The power

flow models used by the optimization module do not allow line

overloading, i.e., in practice, Level 3 is [90%, 100%]).

 Arrow size for lines is set using the ArrowMid property of AddFlow

Link object. The following sizes are used: Link.ArrowMid = 15, 30, 45 for Levels

1, 2 and 3, respectively.

 The DrawColor property is used to set the color of any object contour.

In the case of Loads, we also need to paint the interior of the arrow. This is

accomplished using the FillColor property.

 The Bus object painting, which has multiple cases of interdiction, is

controlled by the PaintBus procedure located at the DrawDesign VB module.
PaintBus(bus As afNode, lineColor As Long, genColor As Long,

loadColor As Long, labelColor As Long)

86

In this procedure, “bus” is a Bus object designed with AddFlow, and the rest of

the variables are used to specify the desired color for each of Bus subnodes

(BusLine, Generator, Load, Label).

For example, if a substation is interdicted, the associated buses and

subsidiary objects in those buses are colored gray, whereas the bus labels are

colored red.

The call from our VB code is as follows:
PaintBus bus, vbGray, vbGray, vbGray, vbRed

Similarly to Edit mode, a second level of information is provided

through “Tips” (see Figure 47).

In Run mode, tips display the following information:

• Buses: Code and full name

• Lines and transformers: Code, capacity, In-Service status and

power flow.

Figure 47. Tip Level of Information in Run Mode. The tip for the selected line in the
left figure shows an “In Service” status for the line, which is carrying 418MW out of a
maximum of 500MW. The line in the right-hand figure is “Out of Service.” (In fact, its
gray color tells us that it has been indirectly interdicted.)

87

Again, dialogue windows constitute the Advanced information level.

Access and navigation through dialogue windows is performed much as it is in

Edit mode, but the information displayed now incorporates results that were not

available in Edit mode. Interdiction and In-Service statuses in dialogue boxes

follow the same coloring rules used for the OD.

Dialogues in Run mode do not allow modification of any of the data

or results displayed. Therefore, they are not true “Dialogue” windows, although

we refer to them as such because of their analogy to Dialogues in Edit mode.

4. Bus Dialogue
The Bus Dialogue is divided into four sections: Title, Generators, Load by

Sector, and Lines/Transformers (Figure 48).

The Title section displays the bus code and name, along with the In-

Service status. For example, bus “107” is In-Service during the selected period,

and therefore is displayed in blue, whereas bus “215’s” status is Not-In-Service,

which is represented in red if the bus has been interdicted, or in gray if it has

been indirectly interdicted.

The Generator section, displayed in tabular form, provides information

about every generating unit at the bus and total for the whole bus. In keeping

with the OD coloring rules, Interdicted Generators are displayed in red, or in gray

if the interdiction is indirect (as in the case of generators at bus “215”).

The Load by Sector section displays the power met and shed at the bus

for every sector, where shedding amounts appear in red.

The Lines/Transformers section displays line status, line capacity and

power flow on the line, along with the bus name and code at the other end of the

line. The line code and the transformer code are displayed in an appropriate

color according to the In-Service status and their Interdiction status.

88

As in Edit mode, the user can navigate to the dialogue window of any of

the listed lines or transformers by double-clicking on their codes.

Figure 48. Bus Dialogue in Run Mode. The two panels show the same bus (“216-
Basov”) under two different statuses. On the left dialogue, the bus is “In Service.” In
fact, we can see that all load at the bus has been met (“shed” is zero for the only sector
of the problem). The only generator connected to the bus is not producing any power,
but this is not due to any interdiction, because its code is colored in black. The bottom
part of the window shows the lines and transformers connected to the bus. One line
(“217-Bates”) is loaded at its maximum capacity (500MW). In the right-hand dialogue,
the bus has been interdicted, which causes an indirect interdiction of all associated
generators and lines, as well as a complete blackout for the load connected to the bus.

5. Line/Transformer Dialogue
The Line/Transformer Dialogue Window (Figure 49) is divided into the

following areas: Title, Interdiction, Capacity and Buses.

The Title section displays the line or transformer code. The code is

displayed in black for a line or in green for a transformer. However, depending

on the In-Service and Interdiction statuses of the line, these colors can change to

red or gray.

89

Figure 49. Line/Transformer Dialogue in Run Mode. The example on the left
dialogue shows information about line “B23,” which is in service, and carries 194MW.
The line connects buses “216-Basov” and “214-Barry,” neither of which has been
interdicted since both are colored in blue. In the right-hand dialogue, the dialogue
window for an interdicted transformer (notice the red color) is shown.

The Capacity section (Max Flow and Flow text boxes) shows the line

capacity along with the actual power flow on the line.

The Bus section shows the two buses associated with the line or

transformer, connected by black or green lines, respectively. The line color

follows the code color in the Title section. The line includes an arrow showing

the direction of the flow between both buses. Additional load and generation

information for each bus is displayed.

The user can navigate to the dialogue window of any of the two buses by

double-clicking on the code-name area for the desired bus.

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

VI. CONCLUSIONS

A. CONCLUSIONS
This thesis has developed a graphical user interface (GUI) to represent

electric power grids subject to interdiction (attack) by terrorists. The work has

improved an instrumental component of the VEGA (Vulnerability of Electrical

Power Grids Analysis) GUI that represents the problem graphically using One-

line Diagrams (ODs). Conforming to Microsoft Windows standards, the new OD

GUI incorporates advanced graphical features, which help the user visualize and

understand the effects of interdiction. Examples of improvements over the

previous OD GUI in VEGA 1.0 are:

• Graphical representation of “dynamic system restoration,” i.e.,

changing system behavior (power flows, shed load, etc.), over time,

as interdicted components are repaired.

• Helpful dialogue windows that allow viewing extended data and

results associated with individual network components.

• Graphical representation of power flows, using arrows and values

in the OD.

• Printing capabilities.

• More flexibility: allows object movement, zooming, rotating objects,

etc., which in turn causes an overall nicer visual effect than that of

VEGA 1.0.

• Easier extensibility: the new OD GUI has been built using a

technology that will greatly simplify the programming necessary to

extend of the application and incorporate new features.

The enhanced OD GUI has been incorporated into the new version of the

system, VEGA 2.0.

92

One of the most important VB limitations we have overcome is the poor

toolset available to create the complex graphical structures required in VEGA. A

key piece in solving this problem is the ActiveX control called AddFlow,

purchased from a vendor. This control is the basis for all the OD graphical

objects constructed in the new GUI.

The OD objects (and sub-objects within objects) created from AddFlow

native objects, Node and Link, exhibit great flexibility in terms of visibility and

transparency, drawing options, anchoring and movement, mouse-controlled

events, printing, etc.

The enhanced OD GUI developed in this thesis provides insightful

visualization of power-flow disruption caused by terrorist attacks, letting the user

compare different attack plans for multiple scenarios, or analyze system

restoration dynamics for a particular scenario, or simply stop at a given scenario

and point in time in order to analyze the whole system in detail. To help in this

last analysis, dialogue windows have been created and customized in order to

show selected information for the system components. In addition, dialogue

windows allow quick access to data and results, by clicking on the desired

system component in the OD.

Overall, we believe the OD GUI improvements described in this thesis

represent an important step forward in the development of the VEGA decision-

support system.

B. RECOMMENDATIONS FOR FUTURE WORK
A number of potentially useful features remain to be implemented in the

OD GUI, and some known difficulties in using it have not been fully addressed.

Some areas in which further work is needed include:

• More effective “case-loading:” In very large cases, most of the

buses will naturally be set to “non-visible” by the user. However, even in this

instance, all the existing components are loaded as objects in the OD. Currently,

loading a real-world case with about 5,000 buses and lines can take more than

93

one minute in a 3MHz personal computer with 1Mb of RAM. A suggested

solution to avoid this delay consists of not to overburden the OD display by

creating objects that are meant to be invisible. However, the current design of

Dialogue Windows requires all objects to be created in order to display the object

information in those windows. The implementation design could be partially

modified, for example, by creating these invisible objects temporarily, and only

when needed.

• More than one OD per case: The user may want to save and

retrieve more than one OD view for the same case (for example, with a different

number of visible buses, or using a different coordinate system). This capability

does not currently exist, but to add it would require redesigning the portion of the

DB that stores the OD configuration.

• Advanced Print and Report Capabilities: The OD GUI has limited

printing capabilities. It would be useful to be able to print additional information

such as the text boxes that appear in scenario display area (Chapter IV Section

B3), or inside the dialogue windows. These and other advanced printing features

can be implemented using the existing properties of PrnFlow. Similarly, it would

be desirable to incorporate formal reports with information on such things as data

and results. Reports could be incorporated using Crystal Reports [Crystal

Decisions 2003] or other reporting tools.

• “Equivalent” graphics: “Equivalencing” is a technique used in

electrical engineering to reduce a large electrical power system into a smaller

system with similar properties, basically by grouping components. Independent

of whether the case we represent in our OD GUI is in itself a case that has

already undergone “equivalencing,” we need to be able apply some type of

“result equivalencing” when some of the buses are invisible. Their information

(power flows, loads and generation) should be picked up by some of the visible

buses. In other words, the hidden information should be displayed as results

associated with the visible buses, in some aggregated fashion. Addressing this

94

problem will require the definition of criteria for aggregating and displaying the

information, as well as the creation of new objects and procedures.

• Help files: In order to produce a more user-friendly program, the

creation of an online Help (whether this is contextual or provided as a separate

menu) is necessary.

• Conclude the implementation of the Options window.

95

APPENDIX. ADDFLOW USEFUL FEATURES

The following tables display particular features (mostly properties) for

Nodes, Links, LinkPoints and common collections, respectively.

Name Type Description

AdjustDst P Determines whether or not the destination point of Link objects can be
adjusted by the user

AdjustOrg P Determines whether or not the origin point of Link objects can be
adjusted by the user

Click E Triggered when the user presses and then releases a mouse button
over the control

Copy M Copies a diagram (or a part of it) into the clipboard

DblClick E Triggered when the user presses and releases a mouse button twice
over the control

DisplayHandles P Determines whether the handles used for selection are displayed or
not

DrawColor P Returns/sets the default pen color used to draw objects (Node or Link)

DrawStyle P Returns/sets the default pen style used to draw objects (Node or Link)

DrawWidth P Returns/sets the default pen width used to draw objects (Node or
Link)

Enable P Returns/sets a value that determines whether an object is enabled or
not

ExportPicture M Exports a diagram (or a part of it) as an enhanced metafile picture

FillColor P Returns/sets the default color used to fill Node objects

ForeColor P Returns/sets the default foreground color used to display text

GotFocus E Triggered when the object receives the focus. This event is
automatically added by VB. (In other environments, use afGotFocus.)

Height P Returns/sets the height of an object

Hidden P Determines whether objects (Node or Link) are by default visible or
hidden

Left P Returns/sets the distance between the internal left edge of an object
and the left edge of its container

LinkStyle P Returns/sets the default style (polyline, bezier) used to draw Link
objects

96

Name Type Description

MouseDown E Triggered when the user presses the mouse button while an object
has the focus.

MouseMove E Triggered when the user moves the mouse

MouseUp E Triggered when the user releases the mouse button while an object
has the focus

Nodes P Returns a reference to the collection of all Node objects of the
diagram

OrientedText P Determines whether the text of a link can be drawn in the same
direction as the link itself

ProportionalBars P Determines whether the scrollbar thumbs should be proportional to
the size of the visible area

Repaint P Determines whether repainting the control is allowed or not

Rigid P Determines whether Link objects are by default rigid or not

ScrollBars P Allows adding scrollbars for the control

SelectedLink P Returns/sets a value which determines if a Link object is selected

SelectedNode P Returns/sets a value which determines if a Node object is selected

ShowToolTip P Determines whether Node and Link tooltips should be displayed or not

SizeArrowMid P Returns/sets the default Link object middle segment arrow size

SizeArrowOrg P Returns/sets the default Link object destination arrow size

Tag P Stores a tag (customized extra text) typically used for recognizing
some aspect of the object within the program

Top P Returns/sets the distance between the internal top edge of an object
and the top edge of its container

Transparent P Determines whether a Node object is transparent or not

Visible P Returns/sets a value that determines whether an object is visible or
hidden

Undo M Undoes, if possible, the last action

Width P Returns/sets the width of an object

XZoom P Returns/sets the horizontal zooming factor

YZoom P Returns/sets the vertical zooming factor

Table 2. List of AddFlow properties (P), events (E) and methods (M).

97

Name Description

Alignment Sets or returns the alignment style of text in the Node

DrawColor Returns/sets the pen color used to draw the Node

DrawStyle Returns/sets the pen style used to draw the Node

DrawWidth Returns/sets the pen width used to draw the Node

EditMode Determines whether the text of the Node can be edited or not

FillColor Returns/sets the color used to fill the Node

Font Returns/sets the font used to display the Node text

ForeColor Returns/sets the foreground color used to display the Node text

Height Returns/sets the height of the bounding rectangle of the Node

Hidden Determines whether the Node is visible or hidden

Index Returns the index of the Node in the Nodes collectio.

InLinks Returns a reference to the collection of incoming Links for the Node

Left Returns/sets the left position of the bounding rectangle of the Node

Links Returns a reference to the collection of all incoming and outgoing Links for the
Node

Marked Returns/sets a flag associated with the Node

OutLinks Returns a reference to the collection of outgoing Links for the Node

Selectable Determines if the Node can be selected by the user or not

Selected Determines if the Node is currently selected or not

Sizeable Determines whether the Node can be resized using the mouse or not

Tag Returns/sets the tag associated with the Node

Text Returns/sets the text associated with the Node

ToolTip Returns/sets the Node tooltip

Top Returns/sets the top position of the bounding rectangle of the Node

Transparent Determines whether the Node is transparent or not

UserData Returns/sets a customized numeric datum associated with the Node

Width Returns/sets the width of the bounding rectangle of the Node

xMoveable Determines whether a Node can be moved horizontally or not

98

Name Description

yMoveable Determines whether a Node can be moved vertically or not

ZOrder Places a Node at the front or back of the Z-order list. Remark: ZOrder is a
mehtod, not a property.

ZOrderIndex Returns/sets the position of the Node in the Z-order list

Table 3. List of Node properties.

Property Description

DrawColor Returns/sets the pen color used to draw the Link.

DrawStyle Returns/sets the pen style used to draw the Link

DrawWidth Returns/sets the pen width used to draw the Link

ExtraPoints Returns a reference to the collection of the Link points

Dst Returns/sets the reference of the destination Node of the Link

ForeColor Returns/sets the foreground color used to display the Link text

Hidden Determines whether the Link is visible or hidden

LinkStyle Returns/sets the style (polyline, bezier) used to draw the Link

Marked Returns/sets a flag associated with the Link

Org Returns/sets the reference of the origin Node object of the Link

Reverse Reverses the origin and the destination of a Link

Rigid Determines if the Link is rigid or not

Selectable Determines if the Link can be selected by the user or not

Selected Determines if the Link is selected or not

ShowJump Returns/sets a value which determines whether jumps are displayed at the
intersection of the Link with other Links or straight crosses are used

Tag Returns/sets the tag associated with the Link

Text Returns/sets the text associated with the Link

ToolTip Returns/sets the Link displayed tooltip

UserData Returns/sets a customized numeric data associated with the Link

99

Property Description

ZOrder Places a Link at the front or back of the Z-order list. Remark: ZOrder is a
method, not a property

Table 4. List of Link properties.

Property Description

x Horizontal coordinate of a point

y Vertical coordinate of a point

Table 5. List of LinkPoint properties.

Name Type Description

Add M Adds an item to a Collection.

Clear M Erases all the items in a Collection.

Count P Returns the number of item objects in a Collection.

Item P Returns the reference to an item object of a Collection.

Remove M Removes an item from a Collection.

Table 6. List of Collection properties (P) and methods (M).

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

LIST OF REFERENCES

Balena, F. (1999). Programming Microsoft Visual Basic 6.0, 1st edition, Microsoft

Press, Redmond, Washington.

Brooke, A., Kendrick, D., Meeraus, A. and Raman R. (1998). GAMS: A User’s

Guide. GAMS Development Corporation.

Chan, S. (1990). “Interactive Graphics Interface for Power System Network

Analysis,” IEEE Computer Applications in Power, January, pp. 34-38.

Crystal Decisions (2003). http://www.crystaldecisions.com/ (accessed 15 Dec

2003)

Department of Defense (2002). Joint Technical Architecture, Version 4.0, pp. 71-

74.

EIA (Energy Information Administration) (2003).

http://www.eia.doe.gov/cneaf/electricity/page/glossary.html (accessed 15

Dec 2003)

Elec-Saver (2003). http://www.elec-saver.com/e-defs.htm#a) (accessed 15 Dec

2003)

GAMS (2003). http://www.gams.com (accessed 15 Dec 2003)

Lassalle Technologies (2003). http://www.lassalle.com/ (accessed 15 Dec 2003)

Microsoft (1998). Microsoft Visual Basic 6.0 Programmer’s Guide, Microsoft

Press, Redmond, Washington

Microsoft (2003-I). Microsoft Visual Basic 6.0, http://msdn.microsoft.com/vbasic/

(accessed 15 Dec 2003)

Microsoft (2003-II). http://www.microsoft.com (accessed 15 Dec 2003)

Overbye, T., Sauer, P., Marzinzik, C. and Gross, G. (1995). “A User-Friendly

Simulation Program for Teaching Power System Operations,” IEEE

Transactions on Power Systems, 10-4, pp. 1725-1733.

102

PowerWorld (2003). http://www.powerworld.com/ferc/ferc715.html (accessed 15

Dec 2003)

Salmeron, J., Wood, K. and Baldick, R. (2003-I). “Optimizing Electric Grid

Design under Asymmetric Threat,” NPS-OR-03-002 Technical Report,

Operations Research Department, Naval Postgraduate School, Monterey,

California.

Salmeron, J., Wood, K. and Baldick, R. (2003-II). “Analysis of Electric Grid

Security under Terrorist Threat,” IEEE Transactions on Power Systems, to

appear.

University of Washington (2003). http://www.ee.washington.edu/research/pstca/

(accessed 15 Dec 2003)

VEGA Project (2003). http://www.nps.navy.mil/or/research/VEGA/vega.htm

(accessed 15 Dec 2003)

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Javier Salmeron, Code OR/Sa
Department of Operations Research
Naval Postgraduate School
Monterey, California

4. Kevin Wood, Code OR/Wd
Department of Operations Research
Naval Postgraduate School
Monterey, California

5. Ted Lewis, Code CS/Lt
Department of Computer Science
Naval Postgraduate School
Monterey, California

6. Paul Stockton
Center of Homeland Security
Naval Postgraduate School
Monterey, California

7. Ross Baldick
Department of Electrical Engineering
University of Texas at Austin
Austin, TX, 78712-1084

8. Major Dimitrios Stathakos
Hellenic Army General Staff, DEPLH
Stratopedo Papagou, Xolargos
Athens, Greece

